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Quantum metrology protocols using entangled states of large spin ensembles attempt to achieve
measurement sensitivities surpassing the standard quantum limit (SQL), but in many cases they are severely
limited by even small amounts of technical noise associated with imperfect sensor readout. Amplification
strategies based on time-reversed coherent spin-squeezing dynamics have been devised to mitigate this
issue, but are unfortunately very sensitive to dissipation, requiring a large single-spin cooperativity to be
effective. Here, we propose a new dissipative protocol that combines amplification and squeezed
fluctuations. It enables the use of entangled spin states for sensing well beyond the SQL even in the
presence of significant readout noise. Further, it has a strong resilience against undesired single-spin
dissipation, requiring only a large collective cooperativity to be effective.
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Introduction.—Entanglement-assisted quantum metro-
logy protocols use nonclassical states to enhance the sensi-
tivity of interferometric measurements of small signals [1–3].
Well-known examples of such sensing states in ensembles of
spin systems are spin-squeezed states and GHZ states [4,5].
For a spin-squeezed state (SSS), the projection-noise
distribution of the state is reshaped to reduce the fluctuations
in the collective spin component associated with signal
acquisition. Besides this intrinsic projection noise, the final
measurement of the spin ensemble can contribute additional
detector noise [2], which severely limits the sensitivity
improvement achievable by spin squeezing. While this
detection noise is not a fundamental limitation, it can pose
a seemingly insurmountable practical challenge in many
leading platforms for quantummetrology (see, e.g., Ref. [6]).
To circumvent this detection-noise issue, twist-untwist

protocols have been proposed [7,8], where the SSS is
transformed into a coherent-spin state (CSS) by time-
reversed unitary spin-squeezing dynamics (i.e., the
“untwist” step) prior to readout. These protocols can be
understood in the broader context of interaction-based
nonlinear readout [9–11] and premeasurement control
operations [12,13]. They implement effective amplification
dynamics in the spin ensemble: the untwist step increases
both the intrinsic projection noise of the ensemble as well
as the nonzero polarization encoding the small signal of
interest. The vast majority of theoretical studies and
experimental demonstrations use a collective one-axis-
twisting (OAT) Hamiltonian to implement the twist-untwist
dynamics [7,8,14–17]. A drawback of these unitary pro-
tocols is their limited robustness against undesired
dissipation, which raises the question of whether more
robust amplification dynamics that is compatible with

spin squeezing could be implemented using dissipative
dynamics.
In this work, we introduce such a dissipative version of a

twist-untwist amplification protocol, which allows one to
use SSS for quantum sensing in the presence of readout
noise. Surprisingly, its sensitivity surpasses the standard
quantum limit (SQL) even if the detection noise is orders
of magnitude larger than the projection noise of a CSS.
Moreover, our protocol is more robust against undesired
dissipation than unitary protocols: it requires only a large
collective cooperativity to achieve large gain, whereas
unitary protocols require an experimentally much more
demanding condition in terms of the single-spin cooper-
ativity. The dissipative amplification dynamics is caused by
collective decay of a spin ensemble coupled to an effective
squeezed reservoir. We stress that this can be engineered
without having to explicitly generate squeezed light, and is
compatible with a variety of experimental platforms. While
previous works have studied related setups, their focus was
almost exclusively on spin squeezing in the dissipative
steady state [21–28]. In contrast, our focus is not on the
steady state, but we instead explicitly characterize and
utilize the unstable transient dynamics when the spins are
initialized in a highly excited state.
Estimation error and amplification.—We consider an

ensemble of N identical spin-1=2 systems described by the
Hamiltonian Ĥ0 ¼ ωŜz, where Ŝα ¼

P
N
j¼1 σ̂

j
α=2 denotes

the α ∈ fx; y; zg components of the collective spin oper-
ator, and σ̂jα denotes the Pauli matrices acting on spin j. Our
goal is to estimate a small signal ϕ → 0 that causes a
nonzero transverse polarization hŜyiini ∝ ϕ, as sketched in
Fig. 1. A general way of generating such a polarized state is
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to prepare the ensemble in a SSS and to perform a Ramsey
measurement where the parameter of interest changes the
spin precession frequency. The estimation error with which
ϕ can be inferred from a measurement of hŜyiini depends on
the intrinsic projection noise ðΔSyÞ2ini ¼ hŜ2yiini − hŜyi2ini of
the state of the ensemble, and additional fluctuations Σ2

det ¼
Ξ2
detN=4 caused by the detection process [2]. Here, Ξ2

det
quantifies the amount of detection noise in units of the
projection noise N=4 of a simple product state, i.e., a CSS.
Spin squeezing decreases the intrinsic projection noise
ðΔSyÞ2ini and is therefore a good strategy to reduce the
estimation error if the condition Σ2

det ≪ ðΔSyÞ2ini holds.
In many experimentally relevant spin systems, however, the
readout noise is orders of magnitude larger than
the intrinsic projection noise, Σ2

det ≫ ðΔSyÞ2ini. For instance,
the photon shot noise of standard fluorescence detection
of nitrogen-vacancy defect centers in diamond has
Ξ2
det ⋙ 1 [6].
The detrimental impact of detection noise can be reduced

by amplification of the transverse polarization before
readout, i.e., hŜyiamp ¼ GhŜyiini with a gain factor G > 1.
The estimation error then takes the form

ðΔϕÞ2amp ¼ ðΔϕÞ2proj þ ðΔϕÞ2det þ ðΔϕÞ2add

¼ ðΔSyÞ2ini þ ðΞ2
det=G

2ÞN=4þ σ2addN=4

j∂ϕhŜyiinij2
; ð1Þ

where σ2add describes additional quantum fluctuations due
to the amplification dynamics, in units of the projection
noise of a CSS. The estimation error without amplification
is obtained by setting G → 1 and σ2add → 0. Amplification
effectively reduces the detection noise, Ξ2

det → Ξ2
det=G

2,
and the minimum estimation error is given by the optimal
trade-off between projection noise, added noise, and
reduced detection noise. Amplification protocols that
isotropically amplify any transverse polarization have

σ2add ¼ Oð1Þ [44] (similar to the corresponding limits for
linear bosonic phase-preserving amplifiers [45,46]). In this
case, spin squeezing cannot be used to improve ðΔϕÞ2amp

even if G2 ≫ Ξ2
det because, no matter how small ðΔϕÞ2proj

has been made by the spin squeezing, the unavoidable
added noise term ðΔϕÞ2add ≥ σ2add=N is at best at the SQL.
Unitary twist-untwist amplification protocols have
σ2add → 0 and can therefore surpass the SQL, but they
are not robust against undesired dissipation (see below).
Our goal is thus to find a robust dissipative amplification
process with G ≫ 1 (such that detection noise is sup-
pressed) and σ2add → 0 in the y direction [such that an initial
spin-squeezed state decreases ðΔϕÞ2amp below the SQL
value ðΔϕÞ2SQL ¼ 1=N].
Squeezed bosonic amplification.—For the simpler prob-

lem of reading out a single bosonic mode [with annihilation
operator â ¼ ðq̂þ þ iq̂−Þ=

ffiffiffi
2

p
], a dissipative process with

these desired properties has recently been demonstrated by
Delaney et al. [47]: it amplifies the quadratures q̂�
exponentially with the same gain GbosðtÞ ¼ expðΓt=2Þ,
but adds minimal noise to the q̂− quadrature:

d
dt

q̂�ðtÞ ¼
Γ
2
q̂�ðtÞ −

ffiffiffi
Γ

p
ξ̂�ðtÞ; ð2Þ

where the fluctuations of q̂� differ exponentially in r,
hξ̂�ðtÞξ̂�ðt0Þi ¼ δðt − t0Þe�2r=2. In the limit r → ∞, one
can thus amplify a signal encoded in a state squeezed along
the q̂− direction without any added noise, σ2add → 0. The
dynamics of Eq. (2) corresponds to negative damping
generated by a Markovian squeezed reservoir, and can
be described by the quantum master equation (QME)
dρ̂=dt ¼ ΓD½β̂†�ρ̂, where β̂ ¼ coshðrÞâ − sinhðrÞâ† is a
Bogoliubov mode with a squeezing parameter r ≥ 0 and
D½Ô�ρ̂ ¼ Ô ρ̂ Ô† − fÔ†Ô; ρ̂g=2 is a Lindblad dissipator.
Dissipative amplification by squeezed superradiance.—

We now ask whether the spin equivalent of Eq. (2),
generated by the QME (Ŝ� ¼ Ŝx � iŜy)

d
dt

ρ̂ ¼ ΓD½coshðrÞŜ− − sinhðrÞŜþ�ρ̂; ð3Þ

has similar properties and could be used for quantum
sensing [48]. Starting from a highly polarized initial state
with hŜzi ≈ N=2, the QME (3) describes the collective (i.e.,
superradiant) decay of a spin ensemble driven by broad-
band squeezed light (with squeezing parameter r) [21–23],
and several proposals have been made to engineer this type
of dynamics in an experimentally more feasible way,
including driving transitions in multilevel atoms [24–26],
driving sideband transitions in trapped ion chains, using
spin-phonon coupling in optomechanical systems, or cou-
pling spins to superconducting circuits [27]. Equation (3)
is a nontrivial generalization of a spin-only model of

FIG. 1. Sketch of a dissipative spin-amplification protocol with
sensitivity below the SQL. A small parameter ϕ to be measured is
encoded in the transverse polarization of an entangled state of N
spins with spin-squeezing parameter r0. Readout of the state adds
an amount Σ2

det ¼ Ξ2
detN=4 of detection noise. The transient

dynamics of SSR decay, i.e., collective decay to a squeezed
bath with squeezing parameter r and decay rate Γ, reduces the
detrimental impact of detection noise and allows one to reach an
estimation error ðΔϕÞ2amp below the SQL.
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superradiance (obtained in the limit r → 0 [54,55]) and
can be interpreted as superradiant decay to a squeezed
environment, hence the name “squeezed superradiance”
(SSR) [28,48,56].
For a highly polarized initial state, Eq. (3) can be mapped

onto the bosonic QME dρ̂=dt ¼ ΓD½β̂†�ρ̂ to leading order
in 1=N using a Holstein-Primakoff approximation. Thus, at
short times and for e2r ≪ N=2, exponential amplification
and a decoupling of the fluctuations in the Ŝx, Ŝy compo-
nents are expected. However, the large gain required to
reduce detection noise can only be achieved beyond the
regime of applicability of a Holstein-Primakoff approxi-
mation, where the nonlinearity of the spin system can no
longer be ignored and the fluctuations of Ŝx, Ŝy as well as
the gain can no longer be optimized independently [29].
This poses a potential challenge for spin amplification since
the nonlinearity of the spin system may now prevent any
amplification dynamics with small σ2add. Surprisingly, small
σ2add can still be achieved, even with moderate levels of
squeezing.
Estimation error below the SQL.—We consider a sensing

scheme where the system is initialized in a SSS ρ̂ssðr0Þ,
which is the steady state of Eq. (3) with r replaced by r0.
The spin squeezing of this state, quantified by the Wineland
parameter [3,57], increases monotonically with increasing
r0 for e2r0 ≲ N [27]. A Ramsey sequence encodes the
signal ϕ into the transverse Ŝy polarization of the spin

ensemble and rotates the state such that it has a large Ŝz
polarization. The state after these steps can be written as
ρ̂0ðr0;ϕÞ ¼ eiϕŜxeiπŜy ρ̂ssðr0Þe−iπŜye−iϕŜx . Starting from
ρ̂0ðr0;ϕÞ, we numerically integrate Eq. (3), extract the
gain GðtÞ ¼ hŜyðtÞi=hŜyð0Þi, and calculate the total esti-
mation error ðΔϕÞ2amp according to Eq. (1). For each
ensemble size N and value of Ξ2

det, we optimize the
amplification time t and the squeezing parameters r0; r
to minimize the estimation error ðΔϕÞ2amp.
As shown in Figs. 2(a) and 3, SSR decay combined with

an initial SSS can surpass the SQL even for significant
levels of detection noise, Ξ2

det ≳ 1. Note that the amount of
detection noise Ξ2

det that can be tolerated while still
providing a sensitivity below the SQL grows linearly with
the number of spins for large N, as shown by the contour
lines in Fig. 3(a). Unlike in the bosonic case, where the
estimation error decreases monotonically with increasing
squeezing strength, the spin system reaches the lowest
estimation error at finite (and moderate) squeezing para-
meters r and r0. In the regime where amplification
improves the estimation error by more than a factor of 2
compared with no amplification [green shaded area in
Fig. 3(b)], we find that it is optimal to match squeezing
parameters, i.e., ropt0 ≈ ropt. Intuitively, this follows from the
fact that SSR decay is seeded by the quantum fluctuations
of both the squeezed bath and the initial SSS. Therefore,
whenever a large gain is needed, it is best to match the

FIG. 2. Minimum squared estimation error ðΔϕÞ2amp after amplification [defined in Eq. (1)], relative to the SQL value ðΔϕÞ2SQL ¼ 1=N,
(a) as a function of the number of spins for fixed single-spin cooperativities ηϕ, ηrel and (b) as a function of the single-spin cooperativity
for fixed N ¼ 50. In both plots, the signal is ϕ ¼ 10−5, and the detection noise is at the level of the projection noise of a CSS, Ξ2

det ¼ 1.
In the gray shaded region, the estimation error is worse than the SQL. (a) The green (blue) markers correspond to SSR amplification in
the presence of single-spin dephasing (relaxation) with a single-spin cooperativity ηϕ ¼ Γ=γϕ ¼ 0.5 (ηrel ¼ Γ=γrel ¼ 0.5). The red
(orange) markers show the corresponding minimum ðΔϕÞ2amp for a unitary amplification scheme using OAT dynamics, which is more
than an order of magnitude worse than the SSR result and fails to surpass the SQL. The SSR data points have been obtained from a
numerically exact solution of the QME shown in Eq. (3), and an optimization of the amplification time t and the squeezing parameters
r0, r. The OAT dynamics is implemented using a Tavis-Cummings coupling to a detuned bosonic mode (see Ref. [29]). The solid lines
are MFT simulations for the same parameters as the markers of the corresponding color (see Ref. [29]). (b) The green and blue (red and
orange) markers show the results for SSR-based (OAT-based) amplification in the presence of undesired single-spin dephasing and
relaxation, respectively {for SSR, this is modeled by the QME [Eq. (4)]}. The dashed lines show the performance of the SSR scheme if
single-spin dissipation degrades the preparation of the squeezed initial state (see Ref. [29] for details). In both plots, the green (red)
dotted line corresponds to the ideal performance of SSR-based (OAT-based) amplification in the absence of undesired single-spin
(single-spin and collective) dissipation.
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amount of squeezing in the initial SSS to the level
of squeezing of SSR [58]. The limiting cases Ξ2

det ≪ 1

and Ξ2
det ≫ 1 are discussed in the Supplemental Material

[29,59].
The estimation error scales as ðΔϕÞ2amp ∝ 1=N2 for

Ξ2
det ≪ 1 and Ξ2

det ≫ 1, and we numerically find ðΔϕÞ2amp ∝
1=N3=2 for Ξ2

det ≈ 1 due to the unavoidable presence
of added noise in our scheme (see the Supplemental
Material [29]). Thus, while SSR amplification allows
one to surpass the SQL, it cannot reach the ultimate
Heisenberg-limit (HL) scaling. Unitary amplification strat-
egies, on the other hand, can amplify certain initial states
without any added noise and thus seem to provide superior
HL-like sensitivity, as shown by the red dotted line in
Fig. 2(a). However, this is no longer the case if undesired
dissipative processes are properly taken into account.
Resilience against single-spin dissipation.—We now

analyze the impact of unwanted single-spin relaxation
(dephasing) at a rate γrel (γϕ) by replacing Eq. (3) with

d
dt

ρ̂ ¼ ΓD½coshðrÞŜ− − sinhðrÞŜþ�ρ̂

þ γrel
XN

j¼1

D½σ̂ðjÞ− �ρ̂þ γϕ
2

XN

j¼1

D½σ̂ðjÞz �ρ̂: ð4Þ

Single-spin relaxation (single-spin dephasing) leads to
exponential decay of Ŝx, Ŝy (see Ref. [29]), but, starting
from a highly polarized initial state hŜzi ≈ N=2, the

amplification dynamics due to collective decay dominates
if the collective cooperativity satisfies Crel ≡ NΓ=γrel > 1
(Cϕ ≡ NΓ=γϕ > 2), as shown by the green (blue) data
points in Fig. 2(a): For small N, single-spin dissipation
increases the estimation error, but ðΔϕÞ2amp quickly recov-
ers the ideal results in the absence of single-spin dissipation
(given by the dotted green line) with increasing N.
This high level of robustness against single-spin dis-

sipation is in sharp contrast to unitary OAT-based ampli-
fication. In Fig. 2(a), we also show the corresponding
results for an amplification scheme based on unitary OAT
dynamics [7], which has been generated using a strongly
detuned Tavis-Cummings interaction between spins and a
bosonic mode. In this implementation, the desired OAT
interaction is accompanied by undesired collective relax-
ation due to decay of the bosonic mode, as well as single-
spin dephasing and relaxation; see the Supplemental
Material [29] for details. As shown in Ref. [44] using
exact QME simulations and a mean-field theory (MFT)
analysis for large N, amplification is only possible
if the single-spin cooperativities satisfy ηϕ ≫

ffiffiffiffi
N

p
and

ηrel ≫ N0.9. Thus, for experimentally realistic values
ηϕ; ηrel ¼ 1=2 and N ≤ 100, the OAT amplification scheme
misses even the SQL by more than an order of magnitude
[red and orange markers in Fig. 2(a)], and an estimation
error below the SQL even for Ξ2

det ¼ 1 is only possible for
extremely large ηϕ; ηrel [Fig. 2(b)]. Note that the cooper-
ativity threshold even increases for larger N [60]. In
contrast, our scheme readily surpasses the SQL and out-
performs unitary OAT protocol in a wide range of exper-
imentally relevant parameters thanks to its much less
restrictive requirement of a large collective cooperativity.
Conclusion.—We have analyzed an amplification

scheme using SSR, i.e., collective decay of an ensemble
of N spins in the presence of a squeezed bath. Unlike in a
related bosonic dissipative amplification scheme, gain and
added noise depend on each other due to the nonlinearity of
the spin ensemble. Surprisingly, despite this nonlinearity, it
is still possible to achieve an estimation error below the
SQL even in the presence of significant levels of detection
noise. Our scheme provides a major practical advantage
over related ideas: SSR amplification uses the same
experimental ingredients as unitary OAT twist-untwist
protocols [29], but, being based on collective dissipation,
it is much more robust against undesired single-spin
dissipation. All required ingredients to engineer the
squeezed bath of the spins have been demonstrated in
state-of-the-art experimental platforms [27,29], which
makes our SSR amplification an interesting candidate to
demonstrate quantum sensing with a sensitivity below the
SQL in the presence of significant levels of detection noise.
Interesting directions for further research are to combine

dissipative and unitary collective dynamics to speed up the
generation of spin-squeezed states and to tune the interplay

FIG. 3. (a) Minimum squared estimation error ðΔϕÞ2amp after
amplification, relative to the SQL value ðΔϕÞ2SQL ¼ 1=N, as a
function of the number of spins N and the level Ξ2

det of readout
noise for ϕ ¼ 10−5. The data are linearly interpolated based on an
equidistant grid of 25 (7) data points along the Ξ2

det (N) direction.
The contour lines indicate the maximum level of readout noise
tolerable if the estimation error should stay the indicated factor f
below the SQL. For large N, the contour lines scale as
0.13f2.17N. (b) Optimal values of the gain G and squeezing
parameter r (r0) of the SSR decay (initial state) for N ¼ 400
[indicated by the gray vertical line in (a)]. In the green shaded
area on the right, the amplification reduces the estimation error by
more than a factor of 2 compared with no amplification. In the
gray shaded area on the left, amplification is not used since it does
not improve the estimation error.
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between gain and added noise. Moreover, nonlinear
estimators of the parameter ϕ may help to reduce the
impact of added noise and increase the sensitivity [63].

This work was primarily supported by the DOE
Q-NEXT Center (Grant No. DOE 1F-60579). We also
acknowledge support from the Defense Advanced
Research Projects Agency (DARPA) Driven and
Nonequilibrium Quantum Systems (DRINQS) program
(Agreement No. D18AC00014), and from the Simons
Foundation (Grant No. 669487, A. C.). Finally, this
research also used resources of the Oak Ridge
Leadership Computing Facility, which is a DOE Office
of Science User Facility supported under Contract No. DE-
AC05-00OR22725.

[1] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum
Metrology, Phys. Rev. Lett. 96, 010401 (2006).

[2] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum
sensing, Rev. Mod. Phys. 89, 035002 (2017).
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I. SQUEEZED SUPERRADIANCE

A. Additional details on the optimization of (∆ϕ)2amp

In this section, we provide additional details on the optimization of the squared estimation error after amplification,
(∆ϕ)2amp, defined in Eq. (1) of the main text. Figure S1(a) complements Fig. 3(b) of the main text and shows the

optimal values of the amplification time, topt, and for the added noise, σ2
add,opt, for N = 400 spins. Figure S1(b)

shows the scaling of (∆ϕ)2amp = a/N b with the number of spins, which has been extracted by fitting the data shown
in Fig. 3(a) of the main text in the range 10 ≤ N ≤ 400.
For very small levels of detection noise, Ξ2

det → 0, amplification does not help to improve the estimation error and
we find topt = σ2

add,opt = 0 [gray shaded area in Fig. S1(a)]. In this regime, the estimation error is only determined

by the projection noise of the initial state ρ̂0(r0, ϕ). Since squeezed-superradiant (SSR) decay allows one to stabilize
a spin-squeezed steady state with a Heisenberg-limit (HL) scaling for e2r0 ≫ N/2 [1], we find (∆ϕ)2amp → 2/N2.

For larger values of Ξ2
det, amplification becomes a useful strategy to reduce the estimation error, and the optimal

amplification time topt grows. Practically relevant is the green shaded area in Fig. S1(a), where the estimation error
is reduced by more than a factor of two compared to the corresponding estimation error without any amplification.

In the limit of extremely large readout noise, Ξ2
det ≫ 0.13N , both the intrinsic projection noise and the added noise

σ2
add = O(1) are negligible compared to the detection noise, such that (∆ϕ)2amp → (∆ϕ)2det = Ξ2

det/G
2N . In this

regime, the optimal strategy is to maximize the gain irrespective of the added noise, which results in the constant
values for topt, σ2

add,opt, and Gopt → Gmax. Since Gmax ∝
√
N , we again find an exponent of b ≈ 2 but the large

prefactor a ∝ Ξ2
det shows that we are far from the SQL and this scaling should not be confused with HL-like scaling.

Note that both ropt and ropt0 are nonzero because a small residual amount of squeezing allows one to reduce σ2
add,opt

and to increase Gopt beyond what can be achieved when a coherent-spin state (CSS) is used for sensing combined
with ordinary superradiant decay (i.e., r = 0).
For a level of readout noise comparable with the projection noise of a CSS, Ξ2

det ≈ 1, the projection noise, reduced
detection noise, and added noise are similar in size and all contribute to the total estimation error. Due to the



S2

nonlinearity of the spin system, none of the three terms can be optimized independently of the others. The optimal
trade-off correponds to parameters where the optimal gain Gopt is smaller than the maximally possible gain Gmax ∝√
N , which in turn allows one to reduce the added noise below unity, σ2

add,opt < 1, as shown in Fig. S2. The squeezing

parameters r0 and r should be matched (in order to maximize the amplification time and thus the gain) and satisfy

e2r
opt
0 ≈ e2r

opt ≈ 3.1
N0.43√
Ξ2
det

. (S1)

Likewise, the optimal gain scales as

Gopt ≈ 0.1e2r
opt

(Ξ2
det)

0.7 . (S2)

As a consequence of the trade-off between gain and added noise, the estimation error scales with an exponent 1.5 ≲
b ≤ 2, which is below the optimal value b = 2 that could be achieved in the absence of any added noise, but which
is still better than a SQL scaling with b = 1. Note that the minimum exponent b ≈ 1.5 at Ξ2

det = 1 is related to the
asymptotic form Ξ2

det = 0.13f2.17N of the contour lines in Fig. 3(a) of the main text.

B. Single-spin dissipation during the generation of the initial spin-squeezed state

In Fig. 2(a) of the main text, we have assumed that the system can be initialized in a perfectly spin-squeezed state,
which is the steady state of the quantum master equation (QME) (3) of the main text with r → r0. In practice, single-
spin relaxation and single-spin dephasing may be present during the preparation of this initial state, as described by
Eq. (4) of the main text with r → r0. These undesired dissipative processes allow the system to explore total-angular-
momentum subspaces with quantum numbers J < N/2 and reduce the amount of spin squeezing of the initial state
[1]. In Fig. 2(b) of the main text, we take these processes into account in the dashed blue and green lines, which are
obtained as follows.

In the case of single-spin relaxation [dashed green curve in Fig. 2(b)], we calculate the steady state of Eq. (4) of the
main text with r → r0, flip this state to the north pole of the collective Bloch sphere such that we obtain the initial
state ρ̂0(r0, ϕ) defined in the main text,

ρ̂0(r0, ϕ) = eiϕŜxeiπŜy ρ̂ss(r0)e
−iπŜye−iϕŜx , (S3)

and let it undergo SSR decay for a time t by evolving it using Eq. (4) of the main text. We then optimize the overall
estimation error (∆ϕ)2amp over r0, r, and the amplification time t.
In the case of single-spin dephasing [dashed blue curve in Fig. 2(b)], it is known that the steady state of Eq. (4)

of the main text has at best −3 dB of spin squeezing, but much higher levels of spin squeezing can be achieved at
transient times [1]. We therefore initialize the system in a CSS pointing to the south pole of the collective Bloch sphere

10−4 10−2 100 102

Detection noise Ξ2
det

0.000

0.005

0.010

0.015

O
pt

im
al

am
pl

ifi
ca

ti
on

ti
m

e
(1
/Γ

)

(a)

0.00

0.25

0.50

O
ptim

al
added

noise
σ

2ad
d
,op

t

N = 400

10−4 10−2 100 102

Detection noise Ξ2
det

1.5

1.6

1.7

1.8

1.9

E
xp

on
en

t
b

Fit (∆φ)2
amp = a/N b

(b)

100

101

102

103

P
refactor

a

FIG. S1. Additional plots complementing Fig. 3 of the main text. (a) Optimal amplification time topt (blue dashed curve)
and optimal added noise σ2

add,opt (solid red curve) as a function of the readout noise Ξ2
det for N = 400 spins and ϕ = 10−5.

(b) Prefactor a (dashed red curve) and exponent b (solid blue curve) of the minimum estimation error (∆ϕ)2amp = a/Nb as a
function of Ξ2

det. The data have been obtained by fitting the numerical results shown in Fig. 3(a) of the main text in the range
10 ≤ N ≤ 400
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FIG. S2. Optimal values of (a) the squared estimation error (∆ϕ)2amp relative to the SQL value (∆ϕ)2SQL = 1/N , (b) the gain

Gopt, and (c) the added noise σ2
add,opt, as well as (d) the fluctuations (∆Sy)

2
ini of the initial state ρ̂(r0, 0) as a function of the

squeezing parameters r0 and r. Parameters are Ξ2
det = 1, N = 400, and ϕ = 10−5. For each data point, the amplification time

t has been optimized to minimize (∆ϕ)2amp. The region of high gain for e2r0 ≫ N/2 is discussed in Sec. ID.

and evolve the system using Eq. (4) with r → r0 until the Wineland parameter ξ2R = N(∆Sy)
2/⟨Ŝz⟩2 is minimal.

We then flip this highly spin-squeezed transient state to the north pole of the collective Bloch sphere as described by
Eq. (S3), and let it undergo SSR decay for a time t generated by evolving it using Eq. (4) of the main text. As usual,
we then optimize the overall estimation error over r0, r, and the amplification time t. Using the transient highly
spin-squeezed state is crucial, since the steady state of Eq. (4) of the main text does not allow one to surpass the
SQL.

C. Mean-field theory analysis of squeezed superradiance

In this section, we analyze SSR decay using mean-field-theory (MFT) to provide additional intuition for the am-
plification process and to support our numerical results with approximate simulations for much larger ensemble sizes.

1. Mean-field equations of motion

We use a second-order cumulant expansion [1–3] to derive a closed set of differential equations of motion (EoMs)

for the first moments Sα = ⟨Ŝα⟩ and the covariances Cαβ = ⟨{Ŝα, Ŝβ}⟩/2 − ⟨Ŝα⟩⟨Ŝβ⟩, where α, β ∈ {x, y, z}. Using
the time-dependent gain factors

λ±(t) = Sz(t)−
1

2
e±2r (S4)

defined in the main text, the QMEs (3) and (4) of the main text generate the following set of MFT EoMs.

d

dt
Sx = Γ [Cxz + λ+(t)Sx]−

γrel
2

Sx − γϕSx , (S5a)

d

dt
Sy = Γ [Cyz + λ−(t)Sy]−

γrel
2

Sy − γϕSy , (S5b)

d

dt
Sz = −Γ

[
Cxx + Cyy + S2

x + S2
y + cosh(2r)Sz

]
− γrel

(
Sz +

N

2

)
, (S5c)

d

dt
Cxx = Γ

[
2λ+(t)Cxx + e+2rλ−(t)Sz + e+2rCzz + 2CxzSx

]
+ γrel

(
N

4
− Cxx

)
+ γϕ

(
N

2
− 2Cxx

)
, (S5d)

d

dt
Cxy = Γ [CyzSx + CxzSy + 2CxySz − cosh(2r)Cxy]− γrelCxy − 2γϕCxy , (S5e)



S4

d

dt
Cxz = Γ

[
λ−(t)Cxz − 2e+2rCxz +

1

4
Sx + CzzSx − 2CxxSx − 2CxySy − e+2rSxSz

]
+ γrel

(
1

2
Sx − 3

2
Cxz

)
− γϕCxz , (S5f)

d

dt
Cyy = Γ

[
2λ−(t)Cyy + e−2rλ+(t)Sz + e−2rCzz + 2CyzSy

]
+ γrel

(
N

4
− Cyy

)
+ γϕ

(
N

2
− 2Cyy

)
, (S5g)

d

dt
Cyz = Γ

[
λ+(t)Cyz − 2e−2rCyz +

1

4
Sy + CzzSy − 2CyySy − 2CxySx − e−2rSySz

]
+ γrel

(
1

2
Sy −

3

2
Cyz

)
− γϕCyz , (S5h)

d

dt
Czz = Γ

[
e−2rCyy + e+2rCxx − 2 cosh(2r)Czz + Sz + e+2rS2

x + e−2rS2
y − 4CxzSx − 4CyzSy

]
+ γrel

(
N

2
− 2Czz + Sz

)
. (S5i)

2. Approximate MFT EoMs and impact of the spin nonlinearity

To gain intuition for the SSR amplification dynamics, we simplify the MFT EoMs (S5) further, using the fact that
the initial state ρ̂0(r0, ϕ) defined in Eq. (S3) has the following moments and covariances to leading order in ϕ (and,
for Czz, in r0).

Sx = 0 , Sy ≈ N

2
ϕ , Sz ≈ N

2
, (S6a)

Cxx ≈ N

2
e+2r0 , Cxy = 0 , Cxz = 0 , (S6b)

Cyy ≈ N

2
e−2r0 , Cyz = −N

2
ϕ , Czz ≈ Nr20 . (S6c)

These relations allow us to drop all terms of O(ϕ2) in Eqs. (S5). In addition, we focus only on the collective part of
the dynamics, i.e., we ignore local dissipation, γrel = γϕ = 0.
Defining the instantaneous gain factor

λ±(t) = Sz(t)−
1

2
e±2r , (S7)

we can rewrite the equations of motion for the transverse polarizations in the simple form

d

dt
Sx,y(t) = Γλ±(t)Sx,y(t) . (S8)

This is very reminiscent of Eq. (2) of the main text, except that the gain factors in the Ŝx and Ŝy direction are
different and time dependent. Amplification occurs as long as Sz(t) ≥ e±2r/2, where the factors e±2r/2 reflect the

fact that a two-level system driven by squeezed vacuum noise experiences different decoherence rates in the Ŝx and
Ŝy directions [4–7].

The EoM for Sz can be derived using the conservation of total angular momentum, Cxx + Cyy + Czz + S2
z =

N/2(N/2 + 1) +O(ϕ2),

d

dt
Sz(t) = −Γ

[
N

2

(
N

2
+ 1

)
− Czz(t)− Sz(t)

(
Sz(t)− cosh(2r)

)]
, (S9)

which shows that the quantum fluctuations seeding the superradiant decay [given by the cosh(2r) term] increase and
speed it up for r > 0. Thus, for large enough r, the gain factors λ±(t) decay more quickly and the overall gain
decreases [unlike in the bosonic case, where Gbos(t) is independent of r].

On the other hand, r should be nonzero to suppress the added noise σ2
add in the Ŝy direction, such that one can

reduce (∆ϕ)2amp using a squeezed initial state with Cyy ≪ N/4. At first glance, the EoMs for the covariances seem
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to suggest that σ2
add → 0 can be reached in the limit r → ∞, similar to the bosonic case:

d

dt
Cxx,yy(t) = Γ

[
2λ±(t)Cxx,yy(t) + e±2rλ∓(t)Sz(t) + e±2rCzz(t)

]
. (S10)

The first term describes the expected amplification of the initial covariances, whereas the last two terms describe the
added noise and can be exponentially suppressed in the EoM for Cyy by increasing r. However, the last term ∝ Czz

(which has no bosonic counterpart, see Sec. I C 3) can still grow large since Czz couples the two covariances Cxx and
Cyy,

d

dt
Czz(t) = Γ

[
e+2rCxx(t) + e−2rCyy(t) + Sz(t)− 2 cosh(2r)Czz(t)

]
. (S11)

Therefore, even if one starts from a SSS, the squeezed covariance Cyy will grow because it is driven by Czz, which in
turn is driven by e+2rCxx. From this result, one may worry that the nonlinearity prevents amplification with large
gain and low added noise in the spin system. Surprisingly, as we show in the main text, this is not the case, i.e., large
gain and small σ2

add can be achieved even with moderate levels of squeezing.

3. Comparison with the bosonic mean-field equations

In this section, we compare the nonlinear MFT equations for Sx,y and Cxx,yy, Eqs. (S8) and (S10), with the
corresponding set of linear bosonic MFT equations. The Holstein Primakoff approximation allows one to map a
highly polarized spin system onto a bosonic mode using the replacements Ŝ+ →

√
Nâ, Ŝ− →

√
Nâ†, Ŝz → N/2. In

our case, this approximation is possible in the limit N/2 ≫ e2r, e2r0 , where the spin MFT EoMs take the following
form:

d

dt
Sx,y ≈ ΓN

2
Sx,y , (S12a)

d

dt
Cxx,yy ≈ ΓN

(
Cxx,yy +

N

4
e±2r

)
+ e±2rCzz +O(N) . (S12b)

On the other hand, the Holstein-Primakoff approximation maps Eq. (3) of the main text onto the following QME
describing incoherent pumping of a Bogoliubov mode,

d

dt
ρ̂ = NΓD[cosh(r)â† − sinh(r)â]ρ̂ , (S13)

where the factor N captures the collective enhancement of the relaxation rate. Using the bosonic quadratures q̂+ =
(â + â†)/

√
2 and q̂− = (â − â†)/

√
2i defined in the main text, and using the abbreviations qα = ⟨q̂α⟩ and Cαβ =

⟨{q̂α, q̂β}⟩/2− qαqβ , where α, β ∈ {+,−}, we can derive the following bosonic MFT equations:

d

dt
q± =

ΓN

2
q± , (S14a)

d

dt
C±± = ΓN

(
C±± +

e±2r

2

)
. (S14b)

Since the Holstein Primakoff approximation maps Ŝx,y →
√

N/2q̂± and Cxx,yy → (N/2)C±±, the two sets of MFT
equations (S12) and (S14) are identical up to the third term ∝ Czz in the EoM for Cxx,yy.

4. Details on the numerical simulation of the MFT EoMs

The MFT results given by the solid green and blue lines in Fig. 2(a) of the main text have been obtained as
follows. We first calculate the steady state of the EoMs (S5) by numerical integration in the absence of single-spin
dissipation, γrel = γϕ = 0, starting from the ground state Sx = Sy = 0, Sz = −N/2, Cxx = Cyy = N/4 and
Cxy = Cxz = Cyz = Czz = 0. The steady state is then rotated to the north pole of the collective Bloch sphere as
described by Eq. (S3). With this rotated state, we integrate Eqs. (S5) again to simulate SSR decay and we optimize
over the amplification time t as well as the squeezing parameters r0 and r.

Alternatively, it is also possible to include undesired single-spin dissipation both in the generation of the initial
sensing state and in the superradiant amplification step, as described in Sec. I B. In this case, the MFT results predict
a slighly larger estimation error (∆ϕ)2amp, but the estimation error is still below the SQL for N ≳ 20.
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D. Amplification for large squeezing parameters

Besides the amplification dynamics discussed in the main text, where the squeezing parameters satisfy e2r0 , e2r ≪
N/2, the SSR decay also amplifies highly squeezed initial states with e2r0 ≫ N/2. In this regime, the initial state

ρ̂0(r0, ϕ) [defined in Eq. (S3)] resembles a Dicke state |mx = 0⟩ in the Ŝx basis: It has maximum fluctuations in the Ŝx

direction, Cxx = N2/8, exponentially small fluctuations in the Ŝy direction, Cyy = e−4r0N2/8, and an exponentially
small net polarization,

⟨Ŝz⟩ ≈
N2

4
e−2r0 cos(ϕ) , ⟨Ŝy⟩ ≈

N2

4
e−2r0 sin(ϕ) , ⟨Ŝx⟩ = 0 . (S15)

SSR decay of this state amplifies the small Ŝy polarization (for r = 0) by a gain factor

G ≈ e2r0

N0.9
, (S16)

which can be exponentially larger than the maximum possible gain Gmax ∝
√
N found in the regime e2r0 , e2r ≲ N/2

discussed in the main text. A comparison between the gain G(t) as a function of the amplification time t in the
regimes e2r0 ≫ N/2 and e2r0 ≪ N/2 is shown in Fig. S3(a). However, it is impractical to use the regime e2r0 ≫ N/2
for spin amplification (despite its nominally extremely large gain) for the following reasons.

1. The required level of squeezing, e2r0 ≫ N/2, is high even for small spin ensembles, which makes the preparation
of ρ̂0(r0, ϕ) experimentally very challenging: Even N = 200 spins require more than 20 dB of squeezing, which
exceeds the levels of squeezing that have been demonstrated in experimental platforms that could potentially
implement SSR decay via reservoir engineering [1, 8, 9], and which has only been demonstrated in much larger
spin ensembles in optical clocks [10].

2. Even if one could generate the required levels of squeezing, the magnitude of the signal after amplification
in the regime e2r0 ≫ N/2 will only be comparable to the magnitude of the signal before amplification in the
regime e2r0 ≲ N/2: Combining Eqs. (S15) and (S16), we find that the exponential enhancement of the gain
factor cancels with the exponential suppression of the initial polarization, yielding a net polarization after
amplification of

⟨Ŝy⟩amp ≈ N

4
ϕ , (S17)

which is of the same order of magnitude as the polarization ⟨Ŝy⟩ini ≈ Nϕ/2 of the initial state before amplification

in the regime e2r0 ≲ N/2 [see Fig. S3(b)]. Moreover, for e2r0 ≲ N/2, amplification will further enhance ⟨Ŝy⟩ini
by Gmax ∝

√
N , which makes the regime e2r0 ≲ N/2 experimentally more attractive since a larger amplified

polarization is easier to read out.

E. Experimental implementation

In this section, we provide a more detailed discussion of the experimental implementation and feasibility of our
spin-amplification protocol.

The collective SSR decay given by Eq. (3) of the main text can be implemented in various ways: The most direct
(but experimentally hard) approach is to illuminate an ensemble of effective two-level systems by broadband squeezed
light [11–15]. In search of an experimentally more feasible method, Raman schemes in multi-level systems have been
proposed [16, 17]. Alternatively, collective SSR decay can be implemented by coupling an ensemble of effective two-
level systems to an auxiliary bosonic mode (for instance, a cavity mode) with an engineered dissipative environment
that relaxes the bosonic mode to a squeezed state [1]. This approach is very generic and allows one to generate SSR
decay dynamics in very different platforms such as trapped-ion setups, solid-state spins coupled to an optomechanical
crystal, and superconducting microwave cavities. As discussed in Ref. 1, the individual building blocks to implement
the reservoir-engineering process have been demonstrated in each of these platforms, and there are no fundamental
obstacles to combining and generate reservoir-engineered SSR decay in a state-of-the-art experiment.

The collective SSR decay term in Eq. (3) of the main text must dominate over non-collective effects, such as the
single-spin relaxation and dephasing processes shown in Eq. (4) of the main text, inhomogeneous broadening of the
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FIG. S3. Amplification dynamics for large initial squeezing e2r0 ≫ N/2, obtained by numerical integration of the QME (3)
of the main text. (a) Gain G (blue curves) and added noise σ2

add (red curves) as a function of time for N = 100, ϕ = 10−5,
and r0 = 0.0 (solid curves) as well as r0 = 4.0 (dashed curves). For large initial squeezing, the gain is enhanced and the added

noise is reduced. (b) Initial polarization ⟨Ŝy⟩ini (dashed curve) and maximally amplified polarization ⟨Ŝy⟩amp (solid curve) as a
function of the squeezing e2r0 of the initial state. The enhanced gain for e2r0 ≫ N/2 competes with an exponential suppression

of the initial polarization ⟨Ŝy⟩ini, such that the amplified polarization ⟨Ŝy⟩amp is only moderate and comparable to the initial

polarization ⟨Ŝy⟩ini in the opposite regime e2r0 ≪ N/2.

spin transition frequencies, and inhomogeneities in the coupling strength of each spin to the auxiliary mode. We
stress that this competition between collective and non-collective effects is a generic feature of every sensing protocol
using collective dynamics, i.e., it also applies to unitary protocols like OAT. Focusing on the reservoir-engineering
approach to generate SSR decay, our protocol uses the same spin-cavity coupling as OAT experiments, which have been
demonstrated in large spin ensembles [10, 18–21]. Hosten et al. [10] explicitly investigated the impact of coupling
inhomogeneities in their experiment and showed that it led only to a 4% reduction in fringe visibility. They also
checked the impact of inhomogeneous broadening but observed no significant degradation of the performance. In an
earlier OAT experiment, inhomogeneous broadening led only to a reduction of the effective number of spins in the
ensemble [18] but did not disrupt the collective nature of the dynamics.

Moreover, superradiant and subradiant phenomena have already been observed in solid-state platforms [22], spin
ensembles coupled to optical cavities [23] as well as directional waveguides [24], and in dense atomic clouds [25],
despite the presence of competing non-collective dynamics. The coherence of the superradiant laser demonstrated
by Bohnet et al. [23] stems from the collective decay of the spin ensemble, which led to a linewidth-narrowing by a
factor of 10 below the one expected from the competing inhomogeneous broadening in the setup. Note that the SSR
decay is compatible with the dynamical decoupling protocol introduced in Ref. 1, which allows one to further reduce
the detrimental impact of inhomogeneous broadening. The same protocol can also be used to rapidly switch off the
decay rate of SSR decay in order to interrupt the decay dynamics at the point of maximum gain.

In summary, all required experimental ingredients for spin amplification using SSR have already been demonstrated
in several experiments, thus making our amplification protocol realizable in state-of-the-art quantum sensing platforms.

II. IMPLEMENTATION OF OAT DYNAMICS USING A TAVIS-CUMMINGS INTERACTION

A. Effective quantum master equation

In this section, we disucss the effective QME for the one-axis-twist (OAT) amplification scheme considered in the
main text. We consider an ensemble of N spin-1/2 systems coupled to a bosonic mode with a Tavis-Cummings
Hamiltonian

ĤTC = ωaâ
†â+ ωsŜz + g

(
Ŝ−â

† + Ŝ+â
)

. (S18)
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Each spin undergoes single-spin dephasing (relaxation) at a rate γϕ (γrel) and the bosonic mode is damped at a rate
κ, which is described by the QME

d

dt
ρ̂ = −i

[
Ĥ, ρ̂

]
+ κD[â]ρ̂+ γrel

N∑
j=1

D[σ̂j
−]ρ̂+

γϕ
2

N∑
j=1

D[σ̂j
z]ρ̂ . (S19)

In the limit of a large detuning between the spins and the bosonic mode, |∆| = |ωa − ωs| ≫ g, one can adiabatically
eliminate the bosonic mode using a Schrieffer-Wolff transformation. In a frame rotating at ωs, we find the QME

d

dt
ρ̂ = Lχρ̂ = −i

[
χŜ2

z , ρ̂
]
+ ΓcollD[Ŝ−]ρ̂+ γrel

N∑
j=1

D[σ̂j
−]ρ̂+

γϕ
2

N∑
j=1

D[σ̂j
z]ρ̂ , (S20)

where we defined the OAT strength χ = g2/∆ and the collective decay rate Γcoll = χκ/∆. The decay of the bosonic
mode generates collective Purcell decay of the spin ensemble. If there was no single-spin dissipation, γrel = γϕ = 0,
this undesired Purcell decay could be suppressed by increasing the detuning ∆. However, this is not feasible in the
presence of single-spin dissipation, because a large detuning would also suppress the desired OAT strength χ such
that single-spin dissipation eventually becomes dominant. Therefore, there is an optimal finite ratio ∆/κ, which
minimizes the detrimental impact of Purcell decay and single-spin dissipation on the OAT dynamics, and maximizes
the achievable gain.

As discussed in Ref. [26], a crucial ingredient of the OAT-based amplification scheme proposed by Davis et al. [27]

is that ⟨Ŝz⟩ is a constant of motion of the OAT dynamics. Starting from an initial state with large Ŝx polarization,

the signal is encoded in the Ŝz polarization, ⟨Ŝz⟩ ∝ ϕ, which ideally remains constant during the subsequent OAT

dynamics and causes a linear growth of ⟨Ŝy⟩ proportional to ϕ. In practice, however, both the Purcell-decay term and

the single-spin-relaxation term in Eq. (S20) break the conservation of Ŝz. The decay of Ŝz during the amplification
process causes an additional background which has to be subtracted to isolate the gain dynamics. The gain has
therefore the form

GOAT
sub (t) = lim

ϕ→0

⟨Ŝy(t, ϕ)⟩ − ⟨Ŝy(t, 0)⟩
Nϕ
2

, (S21)

where ⟨Ŝy(t, 0)⟩ denotes the time-dependent value of ⟨Ŝy⟩ in the absence of any signal, ϕ = 0. Numerical studies

showed that GOAT
sub is highly reduced from its ideal value

√
N/e unless the single-spin cooperativities satisfy ηϕ =

4g2/κγϕ ≫
√
N and ηrel = 4g2/κγrel ≫ N0.9 [26].

B. Numerical minimization of the estimation error

The numerical results shown by the red and orange markers in Fig. 2 of the main text have been obtained from
Eq. (S20) as follows. The system is initialized in a CSS ρ̂OAT

0 pointing along the positive Ŝx direction. We evolve ρ̂OAT
0

for a time tsqz by numerically integrating Eq. (S20) to turn the state into an (over)squeezed state ρ̂OAT
1 = eLχtsqz(ρ̂OAT

0 ).

Next, the signal is applied by rotating ρ̂OAT
1 about the Ŝy axis,

ρ̂OAT
2 (ϕ) = e−iϕŜy ρ̂OAT

1 e+iϕŜy . (S22)

We then undo the squeezing operation by numerically integrating the QME (S20) with χ → −χ for a time tunsqz = tsqz
starting from ρ̂OAT

2 (ϕ),

ρ̂OAT
final (ϕ) = eL−χtunsqz [ρ̂OAT

2 (ϕ)] . (S23)

Finally, the gain is calculated using (S21) with ⟨Ŝy(t, ϕ)⟩ = Tr[Ŝyρ̂
OAT
final (ϕ)], and the estimation error in the presence

of readout noise is obtained from

(∆ϕ)2amp =
(∆Sy)

2
final + Ξ2

detN/4∣∣N
2 G

OAT
sub

∣∣2 , (S24)

where (∆Sy)
2
final = Tr[Ŝ2

y ρ̂
OAT
final (ϕ)] − Tr[Ŝyρ̂

OAT
final (ϕ)]

2. For a given single-spin cooperativity ηk = 4g2/κγk with
k ∈ {ϕ, rel}, we optimize the estimation error over the (un)twist time tsqz = tunsqz and the ratio κ/∆ determining
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the relative strength of Purcell decay and unitary OAT dynamics. We focus on the usual case where the twist and
untwist times are chosen to be identical [27]. Anders et al. [28] showed that a separate optimization of tsqz and tunsqz
leads only to very small improvements.

In the absence of any undesired dissipation, Γcoll = γrel = γϕ = 0, the unitary OAT amplification returns to a CSS

state, (∆Sy)
2
final = (∆Sy)

2
0 = N/4 and the gain approaches GOAT

sub,ideal =
√

N/e [27]. Under these idealized conditions,
one thus finds

(∆ϕ)2amp,ideal =
e(1 + Ξ2

det)

N2
, (S25)

which is shown by the dotted red lines in Fig. 2. From this result, we find that the maximum tolerable level of readout
noise such that the estimation error a factor of f still below the SQL is achieved also scales linearly with N for the
OAT scheme, Ξ2

det,th = fN/e− 1.

C. Mean-field equations

We support the numerical analysis outlined in Sec. II B using MFT simulations, which are shown by the solid red
and orange lines in Fig. 2(a) of the main text. Using a second-order cumulant expansion [1–3], one can derive the
following MFT EoMs from the QME (S20).

d

dt
Sx = −2χ(Cyz + SySz) + Γcoll

(
Cxz −

1

2
Sx + SxSz

)
− γϕSx − γrel

2
Sx , (S26a)

d

dt
Sy = +2χ(Cxz + SxSz) + Γcoll

(
Cyz −

1

2
Sy + SySz

)
− γϕSy −

γrel
2

Sy , (S26b)

d

dt
Sz = −Γcoll

(
Cxx + Cyy + S2

x + S2
y + Sz

)
− γrel

(
N

2
+ Sz

)
, (S26c)

d

dt
Cxx = −4χ (CxzSy + CxySz) + Γcoll

(
Czz − Cxx + 2CxzSx + 2CxxSz −

1

2
Sz + S2

z

)
+ γϕ

(
N

2
− 2Cxx

)
+ γrel

(
N

4
− Cxx

)
, (S26d)

d

dt
Cxy = −2χ (CyzSy − CxzSx − CxxSz + CyySz) + Γcoll (CyzSx + CxzSy − Cxy + 2CxySz)− 2γϕCxy − γrelCxy ,

(S26e)

d

dt
Cxz = +χ

(
1

2
Sy − 2CzzSy − 2CyzSz

)
+ Γcoll

(
−2CxySy +

1

4
Sx − 2CxxSx + CzzSx − SxSz −

5

2
Cxz + CxzSz

)
− γϕCxz + γrel

(
1

2
Sx − 3

2
Cxz

)
, (S26f)

d

dt
Cyy = +4χ (CyzSx + CxySz) + Γcoll

(
Czz − Cyy + 2CyzSy + 2CyySz −

1

2
Sz + S2

z

)
+ γϕ

(
N

2
− 2Cyy

)
+ γrel

(
N

4
− Cyy

)
, (S26g)

d

dt
Cyz = −χ

(
1

2
Sx − 2CzzSx − 2CxzSz

)
+ Γcoll

(
−2CxySx +

1

4
Sy − 2CyySy + CzzSy − SySz −

5

2
Cyz + CyzSz

)
− γϕCyz + γrel

(
1

2
Sy −

3

2
Cyz

)
, (S26h)

d

dt
Czz = Γcoll

(
Cxx + Cyy − 2Czz + S2

x + S2
y + Sz − 4CxzSx − 4CyzSy

)
+ γrel

(
N

2
+ Sz − 2Czz

)
. (S26i)



S10

Using these equations, we repeat the procedure outlined in Sec. II B to calculate (∆ϕ)2amp, and we optimize over the
(un)twist time tsqz = tunsqz as well as the ratio κ/∆.
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Y. Xiao, and V. Vuletić, Near-unitary spin squeezing in 171Yb, Phys. Rev. Lett. 122, 223203 (2019).
[20] E. Pedrozo-Penafiel, S. Colombo, C. Shu, A. F. Adiyatullin, Z. Li, E. Mendez, B. Braverman, A. Kawasaki, D. Akamatsu,
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