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Bosonic two-mode squeezed states are paradigmatic entangled Gaussian states that have wide utility in
quantum information and metrology. Here, we show that the basic structure of these states can be
generalized to arbitrary bipartite quantum systems in a manner that allows simultaneous, Heisenberg-limited
estimation of two independent parameters for finite-dimensional systems. Further, we show that these
general states can always be stabilized by a relatively simple Markovian dissipative process. In the specific
case where the two subsystems are ensembles of two-level atoms or spins, our generalized states define a
notion of two-mode spin squeezing that is valid beyond the Gaussian limit and that enables true
multiparameter estimation. We discuss how generalized Ramsey measurements allow one to reach the
two-parameter quantum Cramér-Rao bound, and how the dissipative preparation scheme is compatible with
current experiments.

DOI: 10.1103/PhysRevLett.134.073603

Introduction—The central goal of quantum metrology is
to harness many-body entanglement to improve the pre-
cision of a sensor beyond the bound set by the projection
noise of nonentangled particles [1–4]. Spin-squeezed
states [5] are particularly attractive given their relative
robustness, e.g., to undesired dissipation like dephasing.
Given the experimental success in producing such states
[6–19], interest has naturally turned to entangling two
distinct ensembles. Can this be done in a way that enables
quantum-enhanced multiparameter estimation [20–26]? In
the simpler case of harmonic oscillators, it is easy to
generalize squeezing to two modes via a Gaussian two-
mode squeezed state (TMSS), which enables simultaneous
entanglement-enhanced estimation of two orthogonal
parameters (see, e.g., [27]). A fundamental question is
how to generalize this structure to more arbitrary sub-
systems, e.g., two spin ensembles for which only non-
Gaussian states allow one to reach the ultimate sensitivity
limits given the finite-dimensional Hilbert space. Further,
what are the fundamental sensitivity limits of these
generalized states? Is there a way to produce and utilize
them using existing experimental resources?
In this work, we provide an answer to all of the

above questions. We introduce a generalization of a
bosonic TMSS that can be defined for any (possibly
finite-dimensional) bipartite system. We show that these
states generically enable simultaneous estimation of two
independent parameters θ1, θ2 with Heisenberg-limited

scaling in finite-dimensional systems; for the application
of two ensembles of N=2 two-level atoms each, we find a
sensitivity of Δθ1;2 ∼

ffiffiffi
3

p
=N, which can be attained for both

parameters simultaneously with a Ramsey-style measure-
ment. Crucially, this sensitivity persists even in the presence
of correlated noise sources such as common-mode noise,
which would be impossible if measuring the two compo-
nents of a bipartite system independently. Further, there is a
generic Markovian dissipative evolution that can be used to
prepare and stabilize these states (an evolution that closely
mimics a two-mode squeezing photonic environment), and
our dissipative scheme is a natural generalization of dis-
sipative single-ensemble spin squeezing [28–30]. We dis-
cuss experimental implementation in cavity QED setups,
and also analyze the robustness against typical imperfec-
tions (finding an advantageous scaling with the collective
cooperativity C that characterizes the setup). In contrast
to prior work [25,31,32], here we explore the beyond-
Gaussian limit of multimode squeezed metrology, including
encoding the signals via noncommuting, nonlocal gener-
ators and the prospect of simultaneous noncommuting
measurements. An advantage of such a nonlocal encoding
is the ability to convert noncommuting observables of one
subensemble (e.g., X̂1 and Ŷ1) into nonlocal observables X̂þ
and Ŷ− that allow one to reach the quantum Cramér-Rao
bound (QCRB).
Multimode squeezed state—We consider a bipartite

system composed of two identical, independent sub-
systems (labeled i∈ f1; 2g). Each subsystem has a local
Hilbert space with basis states jmii, m∈ f0; 1;…; mmaxg*Contact author: mamaev@uchicago.edu
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[see Fig. 1(a)]. We introduce a one-parameter family of
entangled states of this system that directly mimics the
construction of a bosonic TMSS:

jψGðrÞi ¼ N
Xmmax

m¼0

½− tanhðrÞ�mjmi1 ⊗ jmi2; ð1Þ

where N ¼ ðcosh2ðrÞ½1 − tanh2mmaxþ2ðrÞ�Þ−1=2 and r is a
generalized squeezing strength. We refer to this state as a
generalized two-mode squeezed state (GTMSS). It reduces
to a conventional TMSS in the case where each subsystem
is a bosonic mode, jmii is a Fock state, and mmax ¼ ∞.
Much in the way a bosonic TMSS can be generated by
driving two modes with squeezed light, we show below that
our GTMSS can be prepared using a relatively simple form
of engineered dissipation.
To harness our state for metrology, we will also mirror

the bosonic construction, and will introduce generalized
Hermitian “quadrature” operators that will be used both to
encode parameter dependence, and also for readout. The
first step is to chose a generalized lowering operator Ôi for
each subsystem:

Ôijmii ¼ oðmÞjm − 1ii: ð2Þ

These lowering operators must annihilate the vacuum state
jm ¼ 0ii, hence we require oð0Þ ¼ 0. We also assume
without loss of generality oðmÞ∈R. As concrete exam-
ples, if the subsystems are bosonic modes and Ôi are
standard annihilation operators, then oðmÞ ¼ ffiffiffiffi

m
p

and
mmax ¼ ∞. If the subsystems are spins of size S, jmii
can be chosen as states of fixed angular momentum
projection along the quantization axis, and Ôi as standard

collective spin lowering operators, with oðmÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ − ðm − SÞðm − S − 1Þp

and mmax ¼ 2S.
We introduce local generalized quadratures via

X̂i ¼ ðÔ†
i þ ÔiÞ=2, Ŷi ¼ −iðÔ†

i − ÔiÞ=2. Generalized
joint quadrature operators are then defined as

X̂� ¼ X̂1 � X̂2; Ŷ� ¼ Ŷ1 � Ŷ2: ð3Þ

For bosonic modes, these are conventional two-mode
collective quadratures whereas, for spins, they correspond
to sums and differences of the x and y collective spin
projection. Note that in our general case (and in stark
contrast to bosons), we cannot find pairs of these operators
that commute with one another. However, we will in
general be able to find pairs for which the action of
commutator vanishes when applied to our GTMSS. This
will be crucial in enabling optimal sensing properties.
Quantum Fisher information—Consider the multipara-

meter estimation problem where we apply the unitary
Û¼ expð−iθ⃗ ·W⃗Þ to our state, with W⃗¼fX̂þ; X̂−; Ŷþ; Ŷ−g,
where θ⃗¼ðθXþ;θX−;θYþ;θY−Þ are the infinitesimal param-
eters of interest. As our state is pure, the quantum Fisher
information matrix (QFIM) Q is proportional to the
covariance matrix: Qij ¼ 4ðhŴiŴji − hŴiihŴjiÞ. Recall
that if we only care about a single parameter θj, the QCRB
tells us that, asymptotically, the minimal achievable esti-
mation error is Δθj ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
MQjj

p
, where M is the number

of repetitions of the experiment.
For the state jψGðrÞi, we find simply

Q ¼ N Q

0
BBBB@

e−2r 0 0 0

0 e2r 0 0

0 0 e2r 0

0 0 0 e−2r

1
CCCCA
;

N Q ¼ 2
Pmmax

m¼0 tanh
2mðrÞo2ðmÞ

cosh2ðrÞsinh2ðrÞ½1 − tanh2mmaxþ2ðrÞ� : ð4Þ

Remarkably, the covariance matrix directly mirrors a
bosonic TMSS: the generalized quadratures X̂þ; Ŷ− have
reduced fluctuations (i.e., they are “squeezed”), whereas
X̂−; Ŷþ are “antisqueezed.” We plot the corresponding
variances in Fig. 1(b). Note that all system-specific details
enter only through the overall prefactor N Q. Further, from
the QCRB, the optimal sensitivity for the parameters
θX−; θYþ is always e4r better than that of θXþ; θY−.
Our state also enables one to simultaneously achieve the

QCRB on both θX−; θYþ through a simple pair of mea-
surements. We establish this by computing the symmetric
logarithmic derivative (SLD) operators, which provide a
means to find an optimal measurement scheme [33–35].
The SLD operators for our state are (see [36])

(a) (b)

FIG. 1. (a) Schematic of a generic bipartite system, with each
subsystem i∈ f1; 2g having basis states jmii (m∈ f0;…; mmaxg),
and a lowering operator with matrix elements oðmÞ. We introduce
an entangled state that generalizes bosonic two-mode squeezing
and enables simultaneous estimation of two independent param-
eters θ1;2 with Heisenberg-limited sensitivity. (b) Time evolution
of the variance for squeezed and antisqueezed operators hX̂2þi ¼
hŶ2

−i and hX̂2
−i ¼ hŶ2þi, respectively, under dissipative dynamics

that stabilizes our generalized TMSS. The subsystems here are
large spins each of size S ¼ 9=2 (hence mmax ¼ 2S ¼ 9), and the
squeezing parameter is set to r ¼ 0.75.
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L̂X̂� ¼ 2e∓2rŶ�; L̂Ŷ� ¼ −2e�2rX̂�: ð5Þ

These SLDs are simply proportional to our generalized
quadrature operators. One finds that the commutator of
the two sensitive operators is ½X̂−; Ŷþ� ¼ iðẐ1 − Ẑ2Þ with
Ẑi ¼ ðÔ†

i Ôi − ÔiÔ
†
i Þ=2. While the commutator is nonzero,

it vanishes when applied to the state jψGðrÞi due to its
symmetric “paired” form. A general result then implies that
it is possible to simultaneously achieve the QCRB for both
θX−; θYþ by finding new SLDs that commute, and meas-
uring these operators [33,37–39]. We provide a simple
example for very small spin ensembles in [36]. In general,
however, the new SLDs correspond to complicated high-
weight operators that can be challenging to measure. In our
case, as the commutator vanishes when acting on jψGðrÞi
(and not just in expectation), we have a stronger result
that allows us to pursue a different strategy: As shown
in [36], simple sequential measurements of X̂þ and Ŷ− (i.e.,
generalized Ramsey measurements corresponding to the
original SLDs) allow one to simultaneously extract
the two parameters θX− and θYþ with an estimation error
that exhibits Heisenberg limited 1=N scaling (with a
prefactor that is only a factor of ≃3 larger than the
QCRB bound derived below).
We now finally ask about the ultimate sensitivity

that our state allows for the estimation of the two
parameters θX−; θYþ. To do this, we consider the large
elements of the QFIM in the infinite squeezing limit,
Qmax ≡ limr→∞N Qe2r [44]. We find

Qmax ¼
8

1þmmax

Xmmax

m¼0

o2ðmÞ ¼ 8kÔk2
1þmmax

; ð6Þ

where jjOjj$ is the lowering operator for either of the
ensembles jjOijjfor I ¼ 1 or 2 and the norm here is the
Frobenius norm. We thus have a very general kind of
Heisenberg limit on the maximal QFI (which not surpris-
ingly depends on the overall scale of our generalized
lowering operator, which we have not fixed). In the
concrete case where each subsystem corresponds to the
collective manifold of N=2 two-level atoms, one finds

Qmax ¼
4

3
mmaxðmmax þ 2Þ ≈ N2

3
: ð7Þ

The QFI for both optimal parameters yields a Heisenberg-
limit-like scaling (∝ N2), with a corresponding estimation
error scaling like

ffiffiffi
3

p
=N. Even in more general settings, we

can argue this scaling is generic, as long as one normalizes
the operator Ô so that it also grows with system size
the same way as a collective spin lowering operator,
i.e., kÔk2 ∼ N3.
Metrological utility for spin ensembles—We now

consider the relevant case where each subsystem is a

collective spin of size S ¼ N=4, and Ô is a collec-
tive angular momentum lowering operator. Our general
SLD calculation tells us that, e.g., to optimally estimate
θYþ we should measure the squeezed variable X̂þ, which
is just the sum of the x collective spin components of
each ensemble. The estimation error for such a measure-
ment reduces to a signal-to-noise ratio, which can be
expressed in terms of a generalized version of the
Wineland squeezing parameter. We have ðΔθYþÞ2 ¼
ξ2=N, with ξ2 ¼ NhX̂2þi=jhẐ1i þ hẐ2ij2. Defining f� ¼
tanh4Sþ2ðrÞ � 1, we find

ξ2 ¼ −
e−2rSf−½ð2Sþ 1Þfþ þ coshð2rÞf−�
2f½cosh2ðrÞ þ S�fþ − coshð2rÞg2 : ð8Þ

One obtains an analogous result for the estimation of
θX− (which involves measuring Ŷ−).
The Wineland parameter is plotted in Fig. 2(a). For

infinite spin size S → ∞, we have ξ2 ¼ e−2r þOð1=SÞ,
which matches the conventional bosonic result (as expected
based on a linearized Holstein-Primakoff transformation).
The opposite limit of infinite squeezing r → ∞ yields

ξ2 ¼ 3

4ðSþ 1Þ þ
3þ 16Sþ 16S2

20ðSþ 1Þ e−4r þOðe−6rÞ: ð9Þ

If we take only the zeroth-order term, we again find
a Heisenberg-scaling ξ2 ∼ 3=N. The absolute variance
of measurements with a Ramsey-style experiment is
ξ2=N, which exactly coincides with the QFI, ξ2=N ¼
1=ðN Qe2rÞ for any N (not just asymptotically). Hence a
generalized version of Ramsey-style metrology is an
optimal measurement scheme to saturate the quantum
Cramér-Rao bound for the entangled state (1).
Optimal paired states—Before discussing how to prepare

our GTMSS, we ask whether there exist paired states of the

(a) (b)

FIG. 2. (a) Wineland squeezing parameter of the squeezed
operator X̂þ for the steady-state jψGðrÞi from Eq. (8), assuming
both ensembles are spins of size S ¼ N=4. (b) Coefficients am of
the symmetric state

Pmmax
m¼0 amjm;miwith fixedmmax ¼ 30 for the

state jψGðrÞiwith r → ∞, a squeezed state jψ2M2Ai generated via
a unitary two-mode two-axis twisting Hamiltonian (see [36]), and
an optimal state jψopti found by maximizing the QFI over all
possible am (see [36]). The latter state coefficients exactly match
binomial coefficients am ¼ ð−1Þmmmax!=½m!ðmmax −mÞ!�.
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form
P

m amjm;mi that (for the specific case of two spin
ensembles) could be even more metrologically useful. One
candidate state of this form is produced by unitary evolution
of a polarized product state under a two-mode generaliza-
tion of the two-axis twisting Hamiltonian. The Hamiltonian
here is Ĥ2a2m ¼ X̂1X̂2 − Ŷ1Ŷ2 [45]. At an optimal evolution
time, this dynamics generates squeezing of two collective
spin variables that exhibit Heisenberg scaling, but with a
slightly worse prefactor than our GTMSS: one finds a
Wineland parameter ξ2 ∼ 5.1=N (see [36]). Figure 2(b)
compares the coefficients am of the maximally squeezed
state generated by this Hamiltonian to our steady state. One
can also employ a more conventional one-axis twisting
Hamiltonian ∼X̂1X̂2 in the two-mode context, which also
yields a state equally sensitive to two quadratures with a
worse scaling ∼1=N2=3 (see [36]).
For a fixedmmax we can also optimize the coefficients am

to find the maximal QFI for two equally sensitive operators
(see [36]). For spin-S ensembles, the resulting optimal QFI
is N½ðN=2Þ þ 1� ∼ N2=2, which also happens to be the
optimal bound for two-mode measurements of the two spin
ensembles (see [36]). The optimal coefficients are also
plotted in Fig. 2(b). These coefficients are staggered
binomials am ¼ ð−1Þmð2SÞ!=½m!ð2S −mÞ!�. However,
the optimal measurement protocol to saturate the QCRB
for such a state is less clear. Alternatively one may consider
two-component superpositions such as Greenberger-Horne-
Zeilinger (GHZ) states, which also lead to a two-component
simultaneous QFI scaling ∼N2=2 but are rather difficult to
generate (see [36]).
We stress that the TMSS in Eq. (1) provides a significant

advantage for simultaneous two-parameter estimation over
entangled states prepared in each subsystem independently.
Suppose one seeks to measure two correlated parameters
coupling to X̂− and Ŷþ. There can be common-mode noise
such as a random magnetic field ∼X̂þ affecting both
ensembles equally during phase accumulation. If one makes
independent measurements of each subensemble without
entangling the two, one would have to take a differential
signal to suppress this noise, which inhibits measurement of
the second sum parameter Ŷþ. In contrast, our scheme still
allows Heisenberg scaling for both parameters; we can
simply choose the noisy quadrature to be antisqueezed.
This approach also works for sensing two differential fields
X̂− and Ŷ−, as the choice of which two quadratures are
squeezed is freely tuned via local rotations. In that case,
our state is robust even in the presence of common-mode
noise in both X̂þ and Ŷþ. Even in the special case of
noise that affects both correlated and single-ensemble
measurements equally, our scheme still offers an improve-
ment over independent subensembles (see [36]).
Dissipative stabilization—We now discuss how to pre-

pare and stabilize our GTMSS jψGðrÞi in Eq. (1) in the

most general case of two arbitrary subsystems and an
arbitrary generalized lowering operator. This can be
achieved by coupling the two subsystems to a common
engineered dissipative reservoir, such that the resulting
dynamics is described by the quantum master equation:

d
dt

ρ ¼ γ
X
j¼1;2

D½coshðrÞÔj þ sinhðrÞÔ†
j̄ �ρ: ð10Þ

Here, D½Ô�ρ ¼ ÔρÔ† − 1
2
Ô†Ôρ − 1

2
ρÔ†Ô, γ is the dissi-

pation rate, and ð1̄; 2̄Þ ¼ ð2; 1Þ. Remarkably, the pure state
jψGðrÞi is always the unique steady state of this master
equation, independent of additional details (i.e., the specific
choice of mmax and the coefficients oðmÞ that define the
generalized lowering operator); see [36]. This follows from
a special symmetry of the jump operators in this master
equation under modular conjugation by the square root of
the reduced steady-state density matrix of each subsystem
(see [36]) [40].
Turning to the specific case where each subsystem is a

spin ensemble, the above quantummaster equation general-
izes the dissipative preparation of single-ensemble spin-
squeezed states to the two-ensemble case [28–30]. Despite
this superficial similarity, there are crucial differences. The
pure steady state in the single-ensemble case has in general
no simple relation to a single-mode bosonic squeezed state,
whereas in the two-ensemble case, our steady state in
Eq. (1) has a form that directly mirrors a bosonic TMSS for
arbitrary squeezing strength r. Note that Eq. (10) for two
spin ensembles was also explored in Ref. [46] in the context
of entanglement generalization. Unlike our work, this
previous work did not go beyond the weak squeezing,
Gaussian limit, nor did it study quantum metrology proper-
ties. Reference [47] also studied an alternate dissipative
approach for squeezing two ensembles, finding a Wineland
parameter scaling of ∼N−1=4.
One way to engineer Eq. (10) for a single ensemble is to

use atoms with two spin states j↑i, j↓i and two electronic
states jgi, jei inside a lossy cavity, driven by a pair of light
fields, as discussed in Ref. [29]. The laser driving and
cavity decay induce two indistinguishable effective spin-
raising and lowering processes, leading to Lindblad-style
dissipators of the form D½coshðrÞÔþ sinhðrÞÔ†�. This
idea can be extended to a two-mode scheme by considering
two spatially separated ensembles with four effective
raising and lowering processes [46,48,49]. A field gradient
can generate a differential energy shift, that allows one to
resolve the raising and lowering processes that contribute to
the two dissipators in Eq. (10). A sample level scheme is
discussed in [36]. One can also employ atoms with a larger
internal structure, where different ensembles are encoded
by different subsets of atomic levels [47,50]. There are also
studies of ensembles of larger-spin particles, such as spin-1
nematic condensates [51–53] which enable quantum-
enhanced multiparameter encodings. Unlike these systems,
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where the two modes are encoded in two internal modes of
the same spin ensemble, our dissipative approach can also
generate two-mode squeezed states between spatially
separated subensembles. Note that the timescale for dis-
sipative stabilization is favorable, and remains almost
independent of system size for a suitable choice of
parameters (see [36] for details). Also note that, while
the steady-state solution of Eq. (1) assumes identical
ensembles, properties such as squeezing persist for small
deviations such as different atom numbers between the two
ensembles; a numerical benchmark is provided in [36].
Robustness against local dissipation—The engi-

neered dissipators in Eq. (10) typically compete with
additional undesired dissipative processes. We there-
fore analyze the robustness of the two-mode squeezing
against their most prototypical forms—single-spin relax-
ation at a rate γ− and single-spin dephasing at a rate γz,
modeled by adding dissipators γ−

P
2
i¼1

PN=2
j¼1 D½σ̂−i;j�ρ

and γz
P

2
i¼1

PN=2
j¼1 D½σ̂zi;j�ρ to Eq. (10). Here, the index

i (j) denotes the two ensembles (different spins within an
ensemble). To study large numbers of spins, we use a
second-order mean-field-theory approach [30,54,55],
where the full quantum dynamics is approximated by a
set of coupled differential equations (see [36]). We
compared the mean-field-theory solutions with the ana-
lytical results derived above and found excellent agree-
ment. As shown in Fig. 3, dissipative two-mode spin
squeezing is present if the collective cooperativities

Crel;ϕ ¼ Nγ=γ−;z exceed unity, and the Wineland param-
eter decreases ∝ 1=C0.9

rel;ϕ close to that threshold. Notably,
this is a better scaling than what has been found for single-
mode dissipative squeezing [30] and unitary single-mode
spin-squeezing protocols [56,57].
Conclusions and outlook—We have introduced a surpris-

ingly simple and direct generalization of bosonic two-mode
squeezed states to a general bipartite system, demonstrating
that this state allows simultaneous Heisenberg-limited esti-
mation of two independent parameters. Further, we outlined
a general dissipative dynamics that stabilizes such states.
For the specific case of two spin ensembles, our approach
generalizes single-mode spin squeezing, and is compatible
with several current experimental platforms. Our structure is
also applicable beyond spin ensembles; see [36] for a
discussion of examples such as non-Gaussian two-photon
two-mode squeezed states in bosonic systems [41,42]. Our
work opens up several new directions for research: one could
generalize the combination of entanglement with the dynam-
ics of quantum-mechanics free subsystems [58–61] for
enhanced sensing, as has been discussed for bosonic systems
[62]. It would also be interesting to study whether our ideas
could be usefully extended to the case for more than two
ensembles. Finally, Heisenberg-limited spin-squeezing pro-
tocols require single-atom resolution to leverage their fully
enhanced sensitivity. For single-mode squeezing, amplifi-
cation protocols have been proposed to overcome this
limitation [63–65] and it would be interesting to generalize
these concepts to multimode squeezing.
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squeezing for optimal quantum enhancements in sensor
networks, Nat. Commun. 11, 3817 (2020).

[26] Y. Baamara, M. Gessner, and A. Sinatra, Quantum-
enhanced multiparameter estimation and compressed sens-
ing of a field, SciPost Phys. 14, 050 (2023).

[27] C. Fabre and N. Treps, Modes and states in quantum optics,
Rev. Mod. Phys. 92, 035005 (2020).

[28] G. Agarwal and R. Puri, Nonequilibrium phase transitions in
a squeezed cavity and the generation of spin states satisfying
uncertainty equality, Opt. Commun. 69, 267 (1989).

[29] E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and
M. D. Lukin, Dissipative preparation of spin squeezed
atomic ensembles in a steady state, Phys. Rev. Lett. 110,
120402 (2013).

[30] P. Groszkowski, M. Koppenhöfer, H.-K. Lau, and A. A.
Clerk, Reservoir-engineered spin squeezing: Macroscopic
even-odd effects and hybrid-systems implementations,
Phys. Rev. X 12, 011015 (2022).
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I. CALCULATION OF THE SYMMETRIC LOGARITHMIC DERIVATIVES

In this section, we derive the explicit form of the symmetric logarithmic derivative (SLD) operators stated
in Eq. (5) of the main text. The QFIM may alternatively be written as

Qi,j =
1

2
tr
[
ρG

(
L̂Ŵi

L̂Ŵj
+ L̂Ŵj

L̂Ŵi

)]
, (S1)

where ρG = |ψG(r)⟩ ⟨ψG(r)|, and L̂Ŵ are the SLD operators for Ŵ ∈ {X̂+, X̂−, Ŷ+, Ŷ−}. The SLD operators
satisfy

L̂Ŵ ρŴ + ρŴ L̂Ŵ = 2
∂ρŴ
∂θ

, (S2)



2

where ρŴ = |ψŴ ⟩ ⟨ψŴ | is the general squeezed state subject to a unitary rotation |ψŴ ⟩ = exp(−iθŴ ) |ψG(r)⟩
in the limit θ → 0. In this limit, the density matrix is unperturbed, ρŴ = ρG, but has a non-zero derivative
∂ρŴ

∂θ = −iŴ ρG + iρGŴ . We must thus solve the equation,

L̂Ŵ ρG + ρGL̂Ŵ = 2
(
−iŴ ρG + iρGŴ

)
. (S3)

While the SLD operators are not unique, we show that one simple parametrization is given by the quadratures
themselves up to constant prefactors,

L̂X̂±
= 2e∓2rŶ±, L̂Ŷ±

= −2e±2rX̂±. (S4)

As an example, for L̂X̂+
= 2e−2rŶ+, the first term on the left hand side of Eq. (S3) is,

L̂X̂+
ρG = 2e−2rŶ+ρG

= −ie−2r
(
Ô†

1 − Ô1 + Ô†
2 − Ô2

)
ρG

= −iN 2e−2r
(
Ô†

1 − Ô2 − Ô1 + Ô†
2

) mmax∑
m,m′=0

[− tanh(r)]m+m′ |m,m⟩ ⟨m′,m′|

= −iN 2e−2r
∑
m,m′

[− tanh(r)]m+m′
[
o(m+ 1) |m+ 1,m⟩ − o(m) |m,m− 1⟩

− o(m) |m− 1,m⟩+ o(m+ 1) |m,m+ 1⟩
]
⟨m′,m′|

= −iN 2e−2r
∑
m,m′

[− tanh(r)]m+m′
[

o(m)

− tanh(r)
− o(m)

](
|m,m− 1⟩+ |m− 1,m⟩

)
⟨m′,m′|

= −iN 2
∑
m,m′

[− tanh(r)]m+m′
[ −e−2r

tanh(r)
− e−2r

]
o(m)

(
|m,m− 1⟩+ |m− 1,m⟩

)
⟨m′,m′|

= −iN 2
∑
m,m′

[− tanh(r)]m+m′
[ −1

tanh(r)
+ 1

]
o(m)

(
|m,m− 1⟩+ |m− 1,m⟩

)
⟨m′,m′| .

(S5)

We compare this to the first term on the right hand side of Eq. (S3),

−2iX̂+ρG = −i
(
Ô1

†
+ Ô1 + Ô†

2 + Ô2

)
ρG

= −iN 2
(
Ô1

†
+ Ô2 + Ô1 + Ô†

2

) ∑
m,m

[− tanh(r)]m+m′ |m,m⟩ ⟨m′,m′|

= −iN 2
∑
m,m′

[− tanh(r)]m+m′
[
o(m+ 1) |m+ 1,m⟩+ o(m) |m,m− 1⟩

+ o(m) |m− 1,m⟩+ o(m+ 1) |m,m+ 1⟩
]
⟨m′,m′|

= −iN 2
∑
m,m′

[− tanh(r)]m+m′
[ −1

tanh(r)
+ 1

]
o(m)(|m,m− 1⟩+ |m− 1,m⟩) ⟨m′,m′| ,

(S6)

which matches the previous result, showing that L̂X̂+
ρG = −2iX̂+ρG. An analogous calculation shows that

the second terms on the left- and right- hand sides of Eq. (S3) also match. This procedure can be repeated
for all four SLDs in the same way.
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II. SAMPLE COMMUTING SLD OPERATORS

The previous section showed that the SLD operators are equivalent to the quadratures themselves up
to constant prefactors. These SLD operators do not commute in general, therefore, it is not possible to
measure the corresponding observables simultaneously. However, in principle one can construct more complex
operators that do commute and are therefore simultaneously measurable, since the commutator of the SLDs
vanishes on average [1–4]. Here we give a simple demonstrative example of such a construction.
Consider each subsystem to be a single spin-1/2 (S = 1/2). The full system Hilbert space can be written

as {|↑, ↑⟩ , |↑, ↓⟩ , |↓, ↑⟩ , |↓, ↓⟩}. The quadrature operators (proportional to the SLD’s) expressed in this basis
read,

L̂Ŷ+
∼ X̂+ =

1

2

 0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , L̂X̂−
∼ Ŷ− =

1

2

 0 i −i 0
−i 0 0 −i
i 0 0 i
0 i −i 0

 . (S7)

While these do not commute, we note that the two-mode squeezed state here takes the form of |ψG(r)⟩ =
(− tanh(r), 0, 0, 1) /

√
1 + tanh2(r) (with weight only on the symmetric components |↑, ↑⟩, |↓, ↓⟩). Hence any

additional matrix elements acting only on the subspace |↑, ↓⟩, |↓, ↑⟩ can be added to make new SLD’s:

L̂
′

Ŷ+
∼ 1

2

 0 1 1 0
1 a11 a12 1
1 a21 a22 1
0 1 1 0

 , L̂
′

X̂−
∼ 1

2

 0 i −i 0
−i b11 b12 −i
i b21 b22 i
0 i −i 0

 , (S8)

where the coefficients aij , bij are arbitrary (aside from the operators needing to remain Hermitian).
For this small-dimensional system, it is straightforward to find a set of coefficients a11 = a22 = b11 = b22 =

0, a12 = a21 =
√
2, b12 = −b21 =

√
2i for which the new SLD operators commute, [L̂

′

Ŷ+
, L̂

′

X̂−
] = 0, and can

thus be measured independently without disturbing each other. These new operators correspond to,

L̂
′

Ŷ+
∼ X̂+ +

1√
2

(
Ô†

1Ô2 + h.c.
)
, L̂

′

X̂−
∼ Ŷ− +

i√
2

(
Ô†

1Ô2 − h.c.
)
. (S9)

However, these new SLDs are now non-local. Extending to larger-sized spins or more arbitrary system
structures can lead to SLDs that are challenging to even construct, let alone measure. We discuss an
alternate approach using the original SLDs proportional to the quadratures in the next section.
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III. SIMULTANEOUS TWO-PARAMETER ESTIMATION SATURATING QCRB

As mentioned in the main text, the simplest case enabling simultaneous estimation of two parameters with
an error saturating the QCRB is when the corresponding SLDs commute. In this case, the joint estimation
just involves simultaneous measurement of the two SLDs. Joint estimation of both parameters at the QCRB
is also possible when a weaker condition is met: the corresponding SLDs can fail to commute, but the
expectation value of the commutator should vanish in the sensing state [1–4]. In this case however, the
optimal measurements are less straightforward. One needs to find two new, equivalent SLDs that commute
with one another, and then measure these operators. While in principle this is always possible, in practice
the new commuting SLD operators may correspond to operators that are far more complex than the original
SLDs, and hence correspond to measurements that are difficult to implement (e.g., while the original SLD
operators are sums of single-spin operators, the new SLDs could involve high-weight operators).
Here, we show that for our generalized TMSS (realized using two spin ensembles), one can do extremely

well by simply measuring the original SLD operators (which here are simple collective spin variables). One

can simultaneously extract the two parameters encoded in X̂+ and Ŷ− with an estimation error that exhibits
Heisenberg scaling, and which misses the fundamental QCRB bound by just a prefactor of the order of
unity. The origin of this remarkable result is that, in our case, the commutator of the SLDs is a non-zero
operator, but the sensing state is in its null space. This implies that all powers of the commutator have zero
expectation value in the sensing state. Hence, while there is non-zero measurement backaction, its impact is
minimal.
We consider an initial state of our two spin ensembles (with N spins total) to be a generalized two-mode

squeezed state (GTMSS) which has been imprinted by the two infinitesimal parameters θA, θB of interest:

|ψspins(0)⟩ = e−i(θAŶ++θBX̂−) |ψG(r)⟩ . (S10)

We imagine first making a variable strength measurement of X+ to extract the parameter θA. The goal is
to have this measurement be strong enough to still have Heisenberg scaling of the estimation error, without
being so strong that the measurement backaction degrades a subsequent measurement of Y−. To model the

finite-strength measurement of X̂+, we consider a simple model of an ideal detector: an infinitely-heavy free
test mass with position (momentum) operator q̂ (p̂), which is coupled to the spin ensembles via

Ĥint = −λX̂+q̂. (S11)

We imagine that the detector mass starts in a state described by a Gaussian wavefunction ϕ(q) with zero
mean position and momentum, and with position variance σq, ϕ(q) = (2πσq)

−1/4 exp
(
−q2/4σq

)
. The

corresponding momentum variance is then (setting ℏ = 1) σp = 1/(2σq). There is no initial entanglement
between the detector mass and the spins.
The basic idea of the measurement is that the momentum of the detector will be displaced by an amount

proportional to the collective spin variables of interest, i.e.

d

dt
p̂ = λX̂+. (S12)

A final measurement of p then allows one to infer the value of X̂+. Assuming an evolution time T , and

letting ⟨⟨Â2⟩⟩ denote the variance of Â, the signal-to-noise ratio associated with our measurement is

(SNR)X+
≡ ⟨p̂(T )⟩2

⟨⟨p̂(T )2⟩⟩ =

(
λT ⟨X̂+(0)⟩

)2

σp + (λT )2⟨⟨X̂2
+(0)⟩⟩

≡

(
⟨X̂+(0)⟩

)2

⟨⟨X̂2
+⟩⟩imp + ⟨⟨X̂2

+(0)⟩⟩
. (S13)

Here, we have defined the added noise of the measurement (the imprecision noise) to be:

⟨⟨X2
+⟩⟩imp =

σp
λ2T 2

=
1

2λ2T 2σq
≡ 1

2Λ
. (S14)

where we introduce the parameter Λ to denote the effective measurement strength. A strong measurement is
one where the measurement strength Λ ≫ 1/⟨⟨X̂2

+⟩⟩, implying that the estimation error will be only limited
by the intrinsic fluctuations in the state |ψG(r)⟩.
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We next characterize how this measurement of X+ degrades the information on θB encoded in Y−. The
relevant quantity here is the signal to noise ratio associated with Y− (which is simply proportional to the
inverse of the Wineland parameter ξ2):

(SNR)Y−(t) ≡

(
⟨Ŷ−(t)⟩

)2

⟨⟨Ŷ 2
−(t)⟩⟩

. (S15)

We would like to see how this SNR is reduced at time T (after the first measurement of X+) compared to
its initial value at time t = 0. Note that as we are interested in infinitesimal (local) parameter sensing, we
only need this quantity to order θ2, and the numerator is already necessarily θ2.

To that end, note that, at the end of the measurement, the total state of the detector plus spin ensemble
can be written simply as:

|ψtot(T )⟩ =
∫ ∞

−∞
dq ϕ(q)|q⟩ ⊗ exp

(
iλqX̂+T

)
|ψspins⟩. (S16)

The backation of the measurement on the spins is thus easy to describe: both spin ensembles experience a
random rotation about the X axis by an angle λqT , where q is a zero mean Gaussian random variable with
variance σq. We are interested in how this random rotation impacts Ŷ−. This rotation simply rotates Ŷ− in

the Ŷ−-Ẑ− plane, i.e.:

exp
(
−iθX̂+

)
Ŷ− exp

(
iθX̂+

)
= cos θŶ− + sin θẐ−. (S17)

Using this and the fact that ⟨Ẑ−⟩ vanishes to order θA, θB in the state |ψspins(0)⟩, we find that to order θB :

⟨Ŷ−(T )⟩ = ⟨Ŷ−(0)⟩
∫
dq|ϕ(q)|2 cos(λqT ) = ⟨Ŷ−(0)⟩e−Λ/2, (S18)

where Λ is the previously introduced measurement strength. We can calculate the variance of Ŷ− in a similar
manner; we only require this to zeroth order in θA, θB .

⟨Ŷ−(T )2⟩ = ⟨Ŷ 2
−(0)⟩

∫
dq|ϕ(q)|2 cos2(λqT ) = ⟨Ŷ 2

−(0)⟩ coshΛe−Λ. (S19)

Combining these results, we have:

(SNR)Y−
(T ) = (SNR)Y−

(0)
1

coshΛ
. (S20)

Hence, there is indeed a backaction effect: as we increase the strength Λ of the first X+ measurement, the
SNR associated with a subsequent measurement of Y− is exponentially suppressed.
Despite this exponential suppression, the backaction effect here is in fact mild enough to allow estimation

of both θA and θB at the Heisenberg limit. To see this, we first constrain the measurement strength Λ to be a
constant Λ0 of the order of unity that is independent of the the number of spins N . It follows from Eq. (S20)
that the measurement is weak enough that the Wineland parameter associated with a Y− measurement will
only be enhanced by an N -independent constant prefactor coshΛ0. With this choice, the backaction of our
X+ measurement is weak enough that the scaling of the Y− Wineland parameter with N is not changed.
While a Λ = Λ0 measurement strength is sufficient to have a minimal backaction effect on our Y− mea-

surement, the question remains whether it is too weak to enable a good estimation of X+ and hence θA.
Turning to Eq. (S14), we find that the imprecision noise of the X+ measurement is a constant of the order of

unity, ⟨⟨X̂2
+⟩⟩imp = 1/2Λ0. As such, from Eq. (S13), there is a limit to how much squeezing we can usefully

employ: there is no point in squeezing X+ below ⟨⟨X̂2
+⟩⟩ ∼ 1/2Λ0, i.e., the level of the imprecision noise.

For concreteness, consider a squeezing parameter r chosen to scale with N as

exp(2r) =
N

4
. (S21)
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For large N , and using Eq. (4) of the main text, this yields a GTMSS state whose squeezed quadrature
variances are N -independent constants:

⟨⟨X̂2
+⟩⟩ = ⟨⟨Ŷ 2

−⟩⟩ =
1

2C0
, C0 ≃ 0.667. (S22)

For this choice of r, and for large N , the Wineland parameter [c.f. Eq. (8) of the main text] is found to be

ξ2X = ξ2Y =
C1

N
. (S23)

where the constant C1 ≃ 5.33. Crucially, the value of r given in Eq. (S21) is enough to permit Heisenberg
scaling of the Wineland parameters.
We now also set the measurement strength so that the imprecision noise of the X+ measurement is equal

to the value of the squeezed variances in Eq. (S22), i.e., we take Λ0 = C0 ≃ 0.667. We stress that this choice
of measurement strength is independent of N . With this choice of measurement strength, the scaling of
the estimation error (i.e., Wineland parameters) including the imprecision noise and backaction of the first
measurement are only modified by a prefactor. For the estimation of θA via measurement of X+, our choice
of a finite measurement strength Λ0 causes the measurement imprecision to double the effective variance of
X+, and hence doubles the Wineland parameter:

ξ2X+
→ 2C1

N
. (S24)

Similarly, our choice of the measurement strength Λ has a backaction that degrades the SNR associated with
Y− (c.f. Eq. (S15)), implying that the corresponding Wineland parameter is also enhanced by a constant:

ξ2Y−
→ (coshΛ0)C1

N
≃ 1.23C1

N
. (S25)

We thus have our final result: by picking a finite strength first measurement of X+ and a finite squeezing
strength r, we can achieve Heisenberg-limited, 1/N scaling simultaneously for the estimation errors of the
parameters θA and θB . There is a non-zero backaction effect due to the commutator of X+ and Y− being
non-zero, but in our system this is not strong enough to preclude Heisenberg limited scaling.
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IV. COMPARISON TO UNITARY SPIN-SQUEEZING PROTOCOLS

Here, we consider two-mode spin-squeezed states generated by a typical unitary protocol using time-
evolution under an entangling Hamiltonian. The simplest candidate interaction for comparison is a two-mode
one-axis twisting Hamiltonian (2M1A),

Ĥ2M1A = JX̂1X̂2. (S26)

which can generate squeezing when applied to an initial state |ψ0⟩ = |0, 0⟩. Evolving under Ĥ2M1A generates

(equal) squeezing in two combinations of quadratures sin(θ)X̂+ +cos(θ)Ŷ+ and sin(θ)X̂− − cos(θ)Ŷ−, where
one must optimize over all θ to find the lowest variance. This yields a (two-mode) squeezing parameter

ξ22M1A = Nminθ⟨[sin(θ)X̂+ + cos(θ)Ŷ+]
2⟩/(⟨Ẑ1⟩ + ⟨Ẑ2⟩)2. Another candidate interaction is a two-mode

two-axis twisting Hamiltonian (2M2A),

Ĥ2M2A = J
(
X̂1X̂2 − Ŷ1Ŷ2

)
, (S27)

which can also generate squeezing when applied to the initial state |ψ0⟩; in this case the squeezed quadratures

are the combined operators (X̂+ + Ŷ+)/
√
2 and (X̂− − Ŷ−)/

√
2, while the squeezing parameter is ξ22M2A =

N
2 ⟨(X̂+ + Ŷ+)

2⟩/(⟨Ẑ1⟩+ ⟨Ẑ2⟩)2. In Fig. S1(a) we show a sample time-evolution profile of the squeezing for
this latter Hamiltonian.

0. 0.05 0.1 0.15
tJ0.

0.5

1.

(a)ξ2M2A2

0.08 0.14
tJ0.08

0.1

0.12
ξ2M2A
2

0 10 20 30
m0.

0.1

0.2

0.3
(b)|〈ψ2M2A|m,m〉 2

tJ
0.08
0.112
0.14

20 50 100 200
N

0.2

0.1

0.05

0.02

(c)ξopt2

~5.1/N

~3/(4+N )

~2.1/N 2/3 ξ2M2A
2 (unitary)

ξ2M1A
2 (unitary)

r=∞ (dissipative)

Figure S1. (a) Time-evolution of squeezing generated by the unitary two-mode two-axis (2M2A) protocol in the

equally-squeezed operators (X̂+ + Ŷ+)/
√
2 and (X̂− − Ŷ−)/

√
2 using spin operators with fixed size S = 15, hence

mmax = 30. (b) Wavefunction coefficients of the pure state for times before, at, and after the optimal time topt at
which squeezing is highest. (c) Comparison of optimal squeezing for the unitary protocol (dots) and general squeezed
state |ψG(r)⟩ for r → ∞, realizeable via dissipative stabilization (solid line).

Any (pure) squeezed state |ψ2M2A⟩ = e−itĤ2M2A |ψ0⟩ generated by the 2M2A unitary protocol has non-
zero matrix elements only for wavefunction components of equal excitation number |m,m⟩ by symmetry.
Figure S1(b) shows these wavefunction components before, at, and after the optimal squeezing time. Main
text Fig.2(b) shows these coefficients at the optimal time.
In Fig. S1(c) we compare the optimal squeezing generated by the unitary evolution under both 2M1A and

2M2A unitary protocols to that of the general squeezed state |ψG(r)⟩ obtainable via dissipative stabilization.
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The 2M1A scales as (ξ22M2A)opt ∼ 2.1/N2/3, analogous to the single-mode one-axis twisting result. The
2M2A scales as (ξ22M2A)opt ∼ 5.1/N (numerically fitted). The dissipative protocol exhibits the analytically-
computed optimal scaling ξ2 ∼ 3/N in the limit r → ∞.
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V. QUANTUM FISHER INFORMATION OPTIMIZATION FOR SYMMETRIC STATES

Here, we discuss the computation of the optimal QFI of states optimized for measurements of two equally-
sensitive operators. We consider pure states |ψ⟩, for which the diagonal QFI matrix elements are directly
proportional to the variance of the state:

Qi,i = 4 ⟨ψ| Ŵ 2
i |ψ⟩ − 4(⟨ψ| Ŵi |ψ⟩)2. (S28)

We are interested in symmetric states of the form

|ψ⟩ =
mmax∑
m=0

am |m,m⟩ , (S29)

with arbitrary normalized complex coefficients am for a fixed mmax. For such states, off-diagonal matrix
elements of the QFIMQi,j for i ̸= j are guaranteed to vanish due to the symmetry between the two ensembles.

We can evaluate the diagonal matrix elements explicitly. For example, for Ŵi = X̂− we have:

Qi,i =
∑
m,m′

a∗mam′ ⟨m,m|
(
Ô†

1 + Ô1 − Ô†
2 − Ô2

)2

|m′,m′⟩

−
∑
m,m′

a∗mam′

[
⟨m,m|

(
Ô†

1 + Ô1 − Ô†
2 − Ô2

)
|m′,m′⟩

]2
.

(S30)

The second line vanishes, while the first simplifies to,

Qi,i =
∑
m,m′

a∗mam′ ⟨m,m|
[
Ô†

1Ô1 + Ô1Ô
†
1 + Ô†

2Ô2 + Ô2Ô
†
2 − 2Ô1Ô2 − 2Ô†

1Ô
†
2

]
|m′,m′⟩

= 2
∑
m

[
|am|2o2(m) + |am+1|2o2(m+ 1)− a∗mam+1o

2(m+ 1)− a∗mam−1o
2(m)

]
= 2

∑
m

|am − am−1|2o2(m).

(S31)

The other operators are computed analogously.
We can optimize the above expression over all possible am. For spin-S ensembles with mmax = 2S and

o(m) =
√
S(S + 1)− (m− S)(m− S − 1), the coefficients am of the state with maximal QFI exactly match

binomial coefficients with a staggered minus sign:

am = (−1)m
(

2S
m

)
= (−1)m

(2S)!

m!(2S −m)!
. (S32)

The corresponding maximal QFI is exactly Qi,i = N(N2 + 1). Note to avoid confusion that the states here
are labeled m = 0 . . . 2S.

To show the above is true, we show that the QFI is at a global optimum for these coefficients. We write
the QFI out explicitly for spin ensembles, including a normalization constant:

Qi,i = 2

∑
m (am − am−1)

2
[S(S + 1)− (m− S)(m− S − 1)]∑

m(am)2
. (S33)

Note that we have assumed the coefficients am to be real-valued. It is straightforward to see that this must
be true, as the magnitude of each contributing term in the sum is maximized for am, am−1 of opposite sign.
If we choose the first coefficient to be real without loss of generality, the remaining ones must be as well.
To maximize, we now take the partial derivative of the QFI with respect to an arbitrary coefficient am

and set it to zero:

∂Qi,i

∂am
= 0 =− 4

(am+1 − am)[S(S + 1)− (m− S)(m− S + 1)]∑
m′(am′)2

+ 4
(am − am−1)[S(S + 1)− (m− S)(m− S − 1)]∑

m′(am′)2

− 4am

∑
m′(am′ − am′−1)

2[S(S + 1)− (m′ − S)(m′ − S − 1)]

(
∑

m′(am′)2)
2 .

(S34)
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Simplifying, the requisite expression is:

am
∑
m′

(am′ − am′−1)
2[S(S + 1)− (m′ − S)(m′ − S − 1)]

=−
∑
m′

(am′)2
[
(am+1 − am)[S(S + 1)− (m− S)(m− S + 1)]

+ (am−1 − am)[S(S + 1)− (m− S)(m− S − 1)]

]
.

(S35)

We insert the coefficients from Eq. (S32) into the above expression, and employ the following helpful identities:

2S∑
m=0

(
2S
m

)2

=

(
4S
2S

)
,

2S∑
m=1

[(
2S
m

)
+

(
2S

m− 1

)]2
[S(S + 1)− (m− S)(m− S − 1)] = 2S(2S + 1)

(
4S
2S

)
.

(S36)

Using these the expression simplifies to:(
2S
m

)
2S(2S + 1) =

[ [(
2S

m+ 1

)
+

(
2S
m

)]
[S(S + 1)− (m− S)(m− S + 1)]

+

[(
2S

m− 1

)
+

(
2S
m

)]
[S(S + 1)− (m− S)(m− S − 1)]

] (S37)

It is straightforward to verify that the above expression holds true for any integer or half-integer S, and any

m ∈ {0, . . . 2S}. Hence
∂Qi,i

∂am
= 0 for all m, and the staggered binomial coefficients are the optimal state

coefficients for two-mode measurements with two equal spin ensembles. Note that, while this optimization
is performed over a single operator X̂−, the symmetry of the ansatz state and the operator under exchange

of the ensembles ensures that the complementary operator Ŷ+ has equal maximized QFI for the same state.
We note that the maximal QFI N(N2 +1) obtained by this optimization is the optimal bound for two-mode

measurements, even if we allow non-symmetric states
∑

m,m′ am,m′ |m,m′⟩. This can be seen by observing

that the total angular momentum ⟨X̂2
+⟩ + ⟨Ŷ 2

+⟩ + ⟨Ẑ2
+⟩ = N

2 (
N
2 + 1), where Ẑ+ = Ẑ1 + Ẑ2. If we assume

the x and y components are equally sensitive, and bound ⟨Ẑ2
+⟩ ≥ 0, we find that ⟨Ŷ 2

+⟩ ≥ N
4 (

N
2 + 1). For

pure states the QFI is four times the variance, and is hence bounded by ≥ N(N2 + 1), matching the QFI
obtained by optimization over the symmetric states. Note that while the sensitive quadratures used in that
optimization are Ŷ+ and X̂−, the sensitive quadratures can be changed via local rotations on one ensemble
only, which should not affect the QFI bound.
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VI. COMPARISON TO GHZ STATES AND SINGLE-ENSEMBLE APPROACHES

Here we compute the QFI of a GHZ-style state for two spin-S ensembles. Before two-operator correlated
measurements, we consider a GHZ state sensitive to just one operator Ŵi = X̂−, which can be written as,

|GHZ1⟩ =
1√
2
e−iπ

2 Ŷ− (|0, 0⟩+ |mmax,mmax⟩) . (S38)

This is a pure state, so we can again use the variance:

Qi,i = 4 ⟨GHZ1| X̂2
− |GHZ1⟩ − 4

(
⟨GHZ1| X̂− |GHZ1⟩

)2

= 2 (⟨0, 0|+ ⟨mmax,mmax|) ei
π
2 Ŷ−X̂2

−e
−iπ

2 Ŷ− (|0, 0⟩+ |mmax,mmax⟩)

= 2 (⟨0, 0|+ ⟨mmax,mmax|)
(
Ẑ1 + Ẑ2

)2

(|0, 0⟩+ |mmax,mmax⟩)

= 2 (⟨0, 0|+ ⟨mmax,mmax|)
([

2
(
−mmax

2

)]2
|0, 0⟩+

[
2
(
mmax −

mmax

2

)]2
|mmax,mmax⟩

)
= 4m2

max

(S39)

Note that going from the second to the third line requires commutation relations which hold for spin operators
(not in general). Furthermore, going from the third to the fourth line we used the matrix elements

Ẑi |m⟩i = (m− S) |m⟩i =
(
m− mmax

2

)
|m⟩i , (S40)

which are adjusted from the usual longitudinal spin projection operator since we count our states fromm = 0
rather than m = −S. Since mmax = 2S and the total atom number is N = 4S we have,

Qi,i = 16S2 = N2. (S41)

A similar calculation shows that the sensitivity of the other operators Ŵi = {X̂+, Ŷ+, Ŷ−} for this state is
{0, N,N} respectively.

Next we consider a two-mode analogue, which is maximally sensitive to two correlated operators. Inspired
by the single-mode sensitive GHZ state, we write an analogous state with a different rotation,

ρGHZ,2 = |GHZ2⟩ ⟨GHZ2| ,

|GHZ2⟩ =
1√
2
e
−i π

2
√

2
(X̂++Ŷ−)

(|0, 0⟩+ |mmax,mmax⟩) .
(S42)

Much of the preceding calculation remains the same, except there are now two (equally) sensitive operators

Ŵi = X̂−, Ŷ+. The QFI for them reads,

Qi,i = 2(⟨0, 0|+ ⟨mmax,mmax|)ei
π

2
√

2
(X̂++Ŷ−)

X̂2
−e

−i π
2
√

2
(X̂++Ŷ−)

(|0, 0⟩ − |mmax,mmax⟩)

= 2mmax(2mmax + 1) =
N(N + 1)

2
.

(S43)

Notably, this is almost the optimal scaling found in the prior section, albeit smaller by N/2 [the prior section
found N(N + 2)/2].

We note that the Heisenberg-limited scaling we find with our GTMSS |ψG(r)⟩ is much stronger than what
can be accomplished with independent entangled states prepared separately in each ensemble (such as a
pair of GHZ states |GHZ1⟩ ⊗ |GHZ1⟩). As argued in the main text, if there is common-mode or differential
noise affecting both sub-ensembles, single-mode protocols will have no way of suppressing it if one seeks to
measure two correlated parameters simultaneously. Furthermore, even in the very special case of noise that
affects measurement outcomes for both sub-ensembles equally, the scaling we find is better than what can
be accomplished with single-mode approaches. The best single-mode strategy using single-mode GHZ states
would measure one parameter on each subensemble with a maximal QFI of (N/2)2 = N2/4, which is worse
than the GTMSS result ≃ N2/3. Instead considering independently squeezed states for each ensemble (for
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a more direct comparison, as GHZ states are more fragile) following Ref. [5], the optimal QFI for a single-
ensemble approach would instead scale as ≃ N2/8. Finally, if one seeks to measure specific 2D combinations
of fields that are not perfectly correlated across the ensembles a priori, one would need entangled states
along each direction for each ensemble, requiring one to further split each subensemble in half and yielding
a QFI scaling of ≃ N2/16 for GHZ states and ≃ N2/32 for squeezed states at best.
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VII. VERIFICATION OF THE STEADY-STATE SOLUTION

Here, we show that |ψG(r)⟩ is the unique dark state of the dissipation. The action of one of the dissipators
reads(

cosh(r)Ô1 + sinh(r)Ô†
2

)
|ψG(r)⟩ =N cosh(r)

mmax∑
m=1

[− tanh(r)]
m
o(m) |m− 1,m⟩

+N sinh(r)

mmax−1∑
m=0

[− tanh(r)]
m
o(m+ 1) |m,m+ 1⟩

=N cosh(r)

mmax−1∑
m=0

[− tanh(r)]
m+1

o(m+ 1) |m,m+ 1⟩

+N sinh(r)

mmax−1∑
m=0

(− tanh(r))
m
o(m+ 1) |m,m+ 1⟩

=N
mmax−1∑
m=0

[− tanh(r))
−m [

− cosh(r) tanh(r)o(m+ 1)

+ sinh(r)o(m+ 1)
]
|m,m+ 1⟩

=0.

(S44)

The other dissipator has exactly the same dark state structure, except exchanging m and m+1 in the Dirac
ket.
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VIII. GENERAL STRUCTURE OF THE STEADY-STATE SOLUTION

We can understand the steady state solution |ψG(r)⟩ more generally by considering the construction
presented in Ref. [6]. There, it was observed that for any bipartite system with a jump operator of the form

Γ̂ = Ô1 ⊗ 1 + 1⊗ Ô2, (S45)

a pure steady state |ψ⟩ must satisfy

Ô1 = −Ψ̂K̂Ô†
2K̂

−1Ψ̂−1, (S46)

where Ψ̂ =
√
tr2|ψ⟩⟨ψ| and K̂ is complex conjugation in the Schmidt basis. Now, any state |ψ⟩ =∑

m ψm|m,m⟩ is already diagonal in the Schmidt basis, and assuming all of the matrix elements are real, we
find that this implies:

(Ô1)mn = −(Ô2)nm
ψm

ψn
. (S47)

Finally, observing that (O1)mn = o(m)δm,n+1 and ψm = tanhm(r), we see that this implies

Ô1 = − tanh−1(r)Ô†
2, (S48)

which can be trivially satisfied by rescaling L̂ = cosh(r)Ô1 ⊗ 1+ sinh(r)1⊗ Ô†
1, and we can see that this will

always be a steady state.
This constructive example, though, now allows us to create even more complicated steady states. For

example, the ideal state for maximizing the QFI is given by a binomial distribution

|ψ⟩ = N
2S∑

m=0

(−1)m(2S)!

(2S −m!)m!
|m,m⟩. (S49)

A priori it is not obvious what jump operators would be able to stabilize such a state; however, using Eq. S46
we can directly calculate the matrix coefficients that would be required. For example, let’s assume that there
is a jump operator as in Eq. S45, and take Ô1 = Ŝ−

1 is just a simple spin lowering operator. Then we can

use Eq. S46 to find that Ô2 must be a kind of generalized spin raising operator of the form

Ô2 =

2S−1∑
m=0

õ(m)|m+ 1⟩⟨m|, (S50)

õ(m) = −
√
S(S + 1)− (m− S)(m− S + 1)

(2S −m)!m!

(2S −m− 1)!(m+ 1)!

=
√
S(S + 1)− (m− S)(m− S + 1)

2S −m

m+ 1
. (S51)

Using this special form, we can define a jump operator (and its partner under exchanging subsystems)

Γ̂a = Ŝ− ⊗ 1 + 1⊗ Ô2, (S52)

Γ̂b = 1⊗ Ŝ− + Ô2 ⊗ 1, (S53)

such that the quantum master equation ∂tρ̂ = D[Γ̂a]ρ̂+D[Γ̂b]ρ̂ uniquely stabilizes the ideal steady state |ψ⟩
given in Eq. S49.
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IX. UNEQUAL ENSEMBLE SIZES

The GTMSS |ψG(r)⟩ is the steady-state of the engineered dissipation considered in the main text under
the assumption of identical ensembles. However, properties such as squeezing and relevant observable ex-
pectation values remain robust for slight discrepancies between the subsystems. Here we benchmark the
two-mode squeezing for spin ensembles with slightly different sizes. Fig. S2(a) shows the steady-state two-
mode squeezing, found by computing the steady state numerically exactly, for subsystems consisting of spin
ensembles composed of unequal numbers of atoms N1 and N2. We observe that the squeezing remains ro-
bust provided the discrepancy is small. Fig. S2(b) extends these calculations to larger system sizes with a
mean-field theory computation (see Section XII for details), finding analogous behavior.

-0.1 0. 0.1
δN /N

0.1

0.2

0.3

ξ2(a) Exact

N1
9
19
29

-0.05 0. 0.05
δN /N

0.1

0.2

0.3

ξ2(b) Mean-field

N1
29
100
500

Figure S2. (a) Steady-state two-mode squeezing for spin ensembles with unequal atom numbers N1, N2 (hence
corresponding spin sizes S1 = N1/2, S2 = N2/2). We vary the difference in atom number δN = N2 −N1 normalized
by the total atom number N = N1 +N2. For N1 = N2, we use the analytical result predicting maximum squeezing
at r → ∞. For N1 ̸= N2 the steady-state is computed via exact numerical time-evolution of the master equation;
in this case the squeezing is non-monotonic as a function of r, and the plotted result is optimized over r (although
we do not find rapid variations with changing r). (b) Same steady-state two-mode squeezing for larger system sizes,
using a mean-field theory approach (see Section XII for details).
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X. EXPERIMENTAL IMPLEMENTATION OF THE ENGINEERED DISSIPATION

Here, we discuss a potential experimental implementation of the scheme in a cavity-QED architecture.
The master equation from the main text that we seek to realize contains two engineered dissipators, which
we denote Γ̂a, Γ̂b:

Γ̂a = cosh(r)Ô1 + sinh(r)Ô†
2,

Γ̂b = cosh(r)Ô2 + sinh(r)Ô†
1.

(S54)

We consider two spatially separated ensembles i = 1, 2 of trapped atoms inside a lossy cavity. The scheme
is depicted in Fig. S3. Atoms in each ensemble have two ground states |↓⟩i, |↑⟩i (encoding the spin degree of
freedom), and two excited states |e↓⟩i, |e↑⟩i. For the first ensemble, the |e↓⟩1 and |e↑⟩1 states have an energy
splitting δe. For the second manifold, the excited states |e↓⟩2 and |e↑⟩2 instead have a splitting −δe (reversed
from the first ensemble). While this difference in energies could be realized with electromagnetic fields, it is
easier to just swap the labeling by taking the atomic states associated with ↓, ↑ for ensemble 1 to be ↑, ↓ for
ensemble 2. In addition, the system is subject to a field gradient that introduces an additional energy shift
−δB/2, +δB/2 for ↓, ↑ states of ensemble 2 relative to ensemble 1 respectively. The Hamiltonian for these
levels reads,

Ĥ0 = ωe

∑
i=1,2

(
|e↓⟩i ⟨e↓|i + |e↑⟩i ⟨e↑|i

)
+δe

(
|e↑⟩1 ⟨e↑|1 − |e↓⟩2 ⟨e↓|2

)
+
δB

2

(
|e↑⟩2 ⟨e↑|2 − |e↓⟩2 ⟨e↓|2 + |↑⟩2 ⟨↑|2 − |↓⟩2 ⟨↓|2

)
.

(S55)
Each engineered dissipator can be realized with a pair of coherent laser fields driving the cavity. The
dissipator Γ̂a is shown in Fig. S3(a). One laser with frequency, Rabi frequency and detuning (ωa

−, Ω
a
−, ∆

a
−)

excites atoms from |↑⟩1 to |e↓⟩1, while a second laser (ωa
+, Ω

a
+, ∆

a
+) excites from |↓⟩2 to |e↑⟩2. The field

gradient and splitting of the excited states ensures that only these transitions are resonant. The cavity is
assumed to have a mode with frequency ωa = ωe that matches the energy difference from |e↓⟩1 to |↓⟩1 (equal
to the difference from |e↑⟩2 to |↑⟩2 by construction) up to the detunings ∆a

±.
Any atom excited by the laser drives will exchange its excitation into a cavity photon at a rate g set by

the spin-cavity coupling strength. This photon will then leak out at a rate κ. Provided κ is much larger than
the Rabi frequencies and g, the excited states can be adiabatically eliminated. Since one cannot distinguish
whether the photon was generated by the first laser (which would lead to an effective spin-lowering from |↑⟩1
to |↓⟩1) or the second laser (which would lead to an effective spin-raising from |↓⟩2 to |↑⟩2), the net effect of

the loss manifests as correlated dissipation of the form Γ̂a:

Γ̂a ∼

√
g2Ω̃2

κ

(
1

Ω̃

Ωa
−

∆a
−
Ô−

1 +
1

Ω̃

Ωa
+

∆a
+

Ô+
2

)
,

Ω̃ =

√(
Ωa

−
∆a

−

)2

−
(
Ωa

+

∆a
+

)2

.

(S56)

The rate prefactor is γ ∼ g2Ω̃2/κ. The squeezing parameter is set by cosh(r) = 1
Ω̃

Ωa
−

∆a
−

and sinh(r) = 1
Ω̃

Ωa
+

∆a
+
,

which yields tanh(r) =
Ωa

+

Ωa
−

∆a
−

∆a
+
. Strong squeezing is realized when the laser drives are almost equal in

strength; note however that we cannot bring them exactly equal, as the dissipative stabilization timescales
would become too long (see next Supplementary section for details).
The other dissipator is realized with the same level scheme, but a different pair of lasers (ωb

−,Ω
b
−,∆

b
−)

and (ωb
+,Ω

b
+,∆

b
+) depicted in Fig. S3(b). These again induce excitations that are resonant with a different

cavity mode of frequency ωb = ωe + δe (up to the detunings ∆b
±), yielding Γ̂b.



17

Ensemble 1 Ensemble 2(a)

|↓〉1 |↑〉1 |↓〉2
|↑〉2

|e↓〉1

|e↑〉1 |e↓〉2
|e↑〉2

Ω-
a

ω-
a

Ω+
a

ω+
a

δB

δB

Δ-
a Δ+

a

Cavity mode a

a a
κ

δe

ωe

Ensemble 1 Ensemble 2(b)

|↓〉1 |↑〉1 |↓〉2
|↑〉2

|e↓〉1

|e↑〉1 |e↓〉2
|e↑〉2

Ω+
b

ω+
b

Ω-
b

ω-
b

δB

Δ-
bΔ+

b

Cavity mode b

b b
κ

δe

ωe

Figure S3. Schematic of cavity-QED implementation of the engineered dissipators (a) Γ̂a and (b) Γ̂b.
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XI. DISSIPATIVE STABILIZATION TIMESCALE

Here, we discuss the timescale needed to generate the entangled steady-state for two spin-S ensembles.
Figure S4(a) plots the time evolution of the infidelity ||ρ(t)− ρG|| under the engineered dissipation, starting
from the initial state |ψ0⟩ = |0, 0⟩. Aside from short-time transient dynamics, the infidelity scales exponen-
tially as ∼ e−λgapt, where the decay rate λgap is typically set by the Liouvillian dissipative gap. Formally,
this gap is obtained by writing the dissipators as a Liouvillian superoperator,

L = γ
∑
ν=a,b

[
Γ̂ν ⊗ Γ̂∗

ν − 1

2
Γ̂†
ν Γ̂ν ⊗ 1− 1

2
1⊗

(
Γ̂†
ν Γ̂ν

)∗
]
, (S57)

where Γ̂ν are the dissipators from Eq. (S54). We can diagonalize the Liouvillian and obtain the right
eigenvectors,

L |λi⟩ = λi |λi⟩ . (S58)

There is one (unique) steady-state with eigenvalue λ0 = 0 corresponding to our solution |λ0⟩ = vec(|ψG(r)⟩ ⟨ψG(r)|),
where vec(ρ) indicates the vectorization (column-stacking) of a density matrix ρ.

Figure S4(b) plots the next two smallest non-zero eigenvalues as a function of r; the corresponding decay
rates λgap from the previous panel are also shown as dots. Normally, the dissipative gap λgap is the smallest
eigenvalue; here this only holds true in the limit er ≫ S. Outside that limit, the rate is determined by
a higher eigenvalue of the Liouvillian (i.e. there is a specific relevant gap for our choice of initial state).
Regardless, in our regime of interest er ≳ S the relevant gap always scales as ∼ e−2r.
While this scaling is unfavorable with r, the gap increases for larger spin size S. Figure S4(c) plots the

infidelity for fixed r and varying S, demonstrating an improvement in timescale for larger S. The decay rate
and smallest two Liouvillian eigenvalues are plotted in Figure S4(d). We find a scaling of ∼ S1.8, growing
with system size, which can help compensate for the slowdown caused by increasing r. The overall effective
dissipation rate is ∼ γS1.8e−2r. Note, however, that our dissipators’ prefactors grow with r due to the
cosh(r), sinh(r) factors chosen for notational convenience. If we further adjust these dissipator prefactors to
remain approximately constant with r, which would be the case for e.g. fixed laser power in an experiment,
we must multiply the rate by another e−2r ∼ S−1, yielding a rate ∼ γS0.8e−2r.
In general, we want to have an r sufficiently large to generate close-to-optimal squeezing, and not any

larger to avoid slowdown. This generally requires er ≳ S. For simplicity we can assume e2r ∼ S. This yields
a rate ∼ γS−0.2, which favorably remains almost constant with growing system size.
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Figure S4. (a) Time-evolution of infidelity with the steady-state, assuming the ensembles to be spins of fixed size
S = 5/2, for different values of r. The black dashed lines are a long-time exponential decay e−λgapt with λgap the
relevant dissipative gap. (b) Negative real part of the smallest and second-smallest non-zero Liouvillian eigenvalue
(blue and red lines respectively). The black points are the numerically fitted rates from the infidelity dynamics in
panel (a), which fall on one particular branch of the Liouvillian spectrum scaling as ∼ e−2r. (c) Time-evolution of
infidelity for fixed r = 1.5 and varied S. (d) Negative real part of the smallest non-zero Liouvillian eigenvalue, shown
as solid lines for different r. Solid points are corresponding fitted decay rates from the dynamics in panel (c). For
large r, the relevant dissipative gap empirically scales as ∼ S1.8.
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XII. SECOND-ORDER MEAN-FIELD THEORY ANALYSIS OF LOCAL DISSIPATION

Here, we discuss the mean-field-theory analysis of the two-mode spin-squeezing dynamics in the presence
of local dissipation. We start with the quantum master equation

d

dt
ρ̂ = γ

(
D[Γ̂a] +D[Γ̂b]

)
ρ̂+

2∑
i=1

N/2∑
j=1

γ−D[σ̂−
i,j ]ρ̂+

2∑
i=1

N/2∑
j=1

γzD[σ̂z
i,j ]ρ̂ , (S59)

from which we derive equations of motion for the collective expectation values Sα
i = ⟨α̂i⟩ as well as their

(co)variances Cαβ
ii′ = ⟨(α̂iβ̂i′ + β̂i′ α̂i)⟩/2− ⟨α̂i⟩⟨β̂i′⟩, with i, i′ ∈ {1, 2} and α, β ∈ {X,Y, Z}. We consider an

initial state where all spins are in their ground state, Sz
1 = Sz

2 = −N/4, Cxx
ii = Cyy

ii = N/8 and all other

Sα
i , C

αβ
ii′ are zero (note that N denotes the total number of spins, i.e., the sum of both ensembles). For this

initial state, the only nontrivial equations of motion are

d

dt
Sz
i = γ−

(
Sz
i − N

4

)
− γ [Cxx

ii + Cyy
ii + cosh(2r)Sz

i ] , (S60)

d

dt
Cxx

ii = (γ− + 4γz)

(
N

8
− Cxx

ii

)
+ γ

[
cosh(2r)(Czz

ii − Cxx
ii + (Sz

i )
2)− 1

2
Sz
i + 2Cxx

ii S
z
i

]
, (S61)

d

dt
Cyy

ii = (γ− + 4γz)

(
N

8
− Cyy

ii

)
+ γ

[
cosh(2r)(Czz

ii − Cyy
ii + (Sz

i )
2)− 1

2
Sz
i + 2Cyy

ii S
z
i

]
, (S62)

d

dt
Czz

ii = γ−

(
N

4
− 2Czz

ii + Sz
i

)
+ γ [cosh(2r)(Cxx

ii + Cyy
ii − 2Czz

ii ) + Sz
i ] , (S63)

d

dt
Cxx

12 = −(γ− + 4γz)C
xx
12 + γ [Cxx

12 (S
z
1 + Sz

2 )− sinh(2r)Sz
1S

z
2 − cosh(2r)Cxx

12 − sinh(2r)Czz
12 ] , (S64)

d

dt
Cyx

12 = −(γ− + 4γz)C
yx
12 + γ [Cyx

12 + (Sz
1 + Sz

2 )− cosh(2r)Cyx
12 ] , (S65)

d

dt
Cyy

12 = −(γ− + 4γz)C
yy
12 + γ [Cyy

12 (S
z
1 + Sz

2 ) + sinh(2r)Sz
1S

z
2 − cosh(2r)Cyy

12 + sinh(2r)Czz
12 ] , (S66)

d

dt
Czz

12 = −2γ−C
zz
12 − γ [2 cosh(2r)Czz

12 + sinh(2r)(Cxx
12 − Cyy

12 )] . (S67)

From these moments and (co)variances, the two-mode operators of interest can be obtained as follows.

⟨X̂2
±⟩ = Cxx

11 + (Sx
1 )

2 + Cxx
22 + (Sx

2 )
2 ± 2 (Cxx

12 + Sx
1S

x
2 ) , (S68)

⟨Ŷ 2
±⟩ = Cyy

11 + (Sy
1 )

2 + Cyy
22 + (Sy

2 )
2 ± 2 (Cyy

12 + Sy
1S

y
2 ) . (S69)

To calculate steady-state observables, we numerically integrate Eqs. (S60) to (S67) until the norm of the

vector of first moments Sα
i and (co)variances Cαβ

ii′ changes less than 10−6 between two successive time steps.
Figure S5 compares these steady-state results with some exact predictions for the steady-state |ψG(r)⟩ with
no unwanted dissipation γ− or γz, such as,

⟨Ẑi=1,2⟩ =
f+S + sinh(r)2[tanh4S(r)− 1]

f−
,

⟨X̂2
+⟩ = ⟨Ŷ 2

−⟩ = −e
−2r

2

[
(2S + 1)

f+
f−

+ cosh(2r)

]
,

(S70)

using the main-text definition f± = tanh4S+2(r)± 1.
For small squeezing parameter e2r ≪ N , mean-field theory and the exact results agree very well. For

large squeezing parameter e2r ≫ N , mean-field theory is not expected to be an accurate description of the
highly non-Gaussian state of the spin system. Nevertheless, the decay of the signal ⟨Ôz

i ⟩ is reproduced quite
well, but the steady-state covariance saturates at a finite value instead of decreasing to zero with increasing
squeezing parameter. As a consequence, the Wineland parameter obtained from mean-field theory has a
minimum value at a finite value of r, which is a factor of 3 larger than the exact steady-state value of the
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Figure S5. Comparison between mean-field theory simulations based on Eqs. (S60) to (S67) and the exact results
given by Eq. (S70). Parameters are N/2 = 1000 and γ− = γz = 0.

Wineland parameter in the limit r → ∞. The Heisenberg-like scaling of the minimum Wineland parameter
as a function of N , however, is reproduced well by mean-field theory.

The results shown in Fig. 3(a) of the main text have been obtained by minimizing the Wineland parameter
(obtained from mean-field theory for γz = 0 and γ− > 0) over the squeezing strength r for different values
of the collective cooperativity Crel = Nγ/γ−. The dotted lines indicate the mean-field-theory steady-state
Wineland parameter obtained for γz = γ− = 0, which is a factor of 3 larger than the exact result due to the
breakdown of mean-field theory for large values of the squeezing parameter r.
For local dephasing, γ− = 0 but γz > 0, it is known that a slow timescale emerges in the dissipative

stabilization of a single-mode spin-squeezed state [5]. A similar effect occurs in the case of dissipative two-
mode spin squeezing, as shown in Fig. S6. Starting from a coherent state polarized along the −z direction, the
two subensembles relax into a highly spin-squeezed “prethermal” state on a timescale ∝ 1/Nγ. On a much
longer timescale ∝ N/γz, dephasing leads to a reduction of spin squeezing such that the Wineland parameter
increases towards its steady-state value. Since these timescales are separated by orders of magnitude in 1/γ
for large spin number N , it is reasonable to assume that precision metrology will be performed with the
highly spin-squeezed transient state. Therefore, the results shown in Fig.3(b) of the main text have been
obtained by minimizing the Wineland parameter (obtained from mean-field theory for γ− = 0 and γz > 0)
over the evolution time t and the squeezing strength r for different values of the collective cooperativity
Cϕ = Nγ/γz.
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Figure S6. Mean-field simulation of the slow timescale emerging in the relaxation dynamics in the presence of weak
collective dephasing. Parameters are r = 0.2 and γz = 0.001γ. Each subsystem is initialized in a coherent spin state
polarized along the −z direction.
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XIII. ALTERNATE NON-GAUSSIAN TWO-MODE STATES

While the main text focuses on spins and bosonic analogues, we can also consider systems with more exotic
annihilation operators Ôi. One such example is parity-restricted bosonic modes, for which the annihilation
operators remove pairs of excitations, e.g. Ôi = âiâi for bosonic lowering operators âi [7], which is of interest

to circuit-QED platforms [8, 9]. For this choice o(m) =
√
2m(2m− 1) and mmax = ∞. In this case the

squeezed quadrature QFI takes the simple form of

Qmax = 4(1− e−2r + e4r) ∼ e4r. (S71)

This scaling is in line with the average photon number of the state, which would also scale as ∼ e4r, but
provides a far more non-trivial example of a system that can nonetheless be engineered for sensing. More
concretely, one of the correlated system operators X̂− reads,

X̂− =
1

2

[
â†1â

†
1 + â1â1 − â†2â

†
2 − â2â2

]
. (S72)

The scheme we describe can thus be used for entanglement-enhanced sensing of parametric driving addressing
two separate bosonic modes, e.g. one can test how well-correlated the amplitudes of the driving are for the
different modes.
Another non-trivial example with a finite Hilbert space is bosonic modes with a hard-core cutoff, enforced

for instance by strong non-linear interactions. In this case we can consider the annihilation operators to
be conventional bosonic operators Ôi = âi with the usual matrix elements o(m) =

√
m, but assume finite

mmax <∞. For this example, we find an optimal QFI of

NQe
2r =

2e2r
[
1− (1 +mmaxsech(2r)) tanh

2mmax(r)
]

1− tanh2mmax+2(r)
,

limr→∞NQe
2r = Qmax = 4mmax.

(S73)

It is interesting to observe that this QFI scales less favorably with Hilbert space size than the case of spins,
which instead features a quadratic scaling ∼ m2

max, indicating that the structure of the annihilation operator
matrix elements o(m) plays a key role in the ultimate (maximally-squeezed) sensitivity.
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[S4] L. Pezzè, M. A. Ciampini, N. Spagnolo, P. C. Humphreys, A. Datta, I. A. Walmsley, M. Barbieri, F. Sciarrino,
and A. Smerzi, Optimal measurements for simultaneous quantum estimation of multiple phases, Physical Review
Letters 119, 130504 (2017).

[S5] P. Groszkowski, M. Koppenhöfer, H.-K. Lau, and A. Clerk, Reservoir-engineered spin squeezing: Macroscopic
even-odd effects and hybrid-systems implementations, Phys. Rev. X 12, 011015 (2022).

[S6] A. Pocklington and A. A. Clerk, Universal time-entanglement trade-off in open quantum systems, arXiv preprint
arXiv:2404.03625 (2024).

[S7] S. L. Braunstein and R. I. McLachlan, Generalized squeezing, Phys. Rev. A 35, 1659 (1987).
[S8] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J.

Hatridge, et al., Confining the state of light to a quantum manifold by engineered two-photon loss, Science 347,
853 (2015).
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