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We study the quantum synchronization of
a single spin driven by an external semi-
classical signal for spin numbers larger than
S = 1, the smallest system to host a quan-
tum self-sustained oscillator. The occurrence
of interference-based quantum synchronization
blockade is found to be qualitatively different
for integer vs. half-integer spin number S. We
explain this phenomenon as the interplay be-
tween the external signal and the structure of
the limit cycle in the generation of coherence
in the system. Moreover, we show that the
same dissipative limit-cycle stabilization mech-
anism leads to very different levels of quantum
synchronization for integer vs. half-integer S.
However, by choosing an appropriate limit cy-
cle for each spin number, comparable levels of
quantum synchronization can be achieved for
both integer and half-integer spin systems.

1 Introduction
From ticking metronomes to blinking fireflies, the phe-
nomenon of synchronization occurs in a wide variety
of systems [1]. Classically, synchronization has been
studied since the 17th century and has found appli-
cations in many areas of our daily lives, such as in
time-keeping devices and power grids [2]. Studies of
synchronization in the quantum regime started only
recently and have raised a number of fascinating and
fundamental questions. These include the definition,
existence, and measurement of quantum synchroniza-
tion, its relation to other measures of quantumness,
and the prediction of quantum effects in synchroniza-
tion that have no classical analogue. After early pio-
neering work on the quantum kicked rotator [3], the
synchronization behavior of a variety of quantum sys-
tems has been investigated. This includes optome-
chanical systems [4], masers [5], and the quantum van
der Pol oscillator [6, 7, 8, 9, 10, 11, 12], whose classi-
cal counterpart has long been an important model in
studies of non-linear dynamics [13].

More recently, synchronization of quantum spins
has been studied [14, 15, 16, 17, 18, 19, 20, 21].
This is in part motivated by the simple structure
of spins, viz. their finite-dimensional Hilbert space,

that enables tackling fundamental questions in quan-
tum synchronization, and in part by potential ex-
perimental implementations of quantum synchroniza-
tion [22, 23, 24, 25, 26]. While low-spin systems pro-
vide a convenient platform to study the basic prin-
ciples of quantum synchronization [19, 20, 21], the
question arises how quantum effects in synchroniza-
tion change if one varies the spin number between the
smallest possible value of S = 1 [19] and large quasi-
classical values. Moreover, it is an open issue whether
there are differences in the synchronization behavior
of integer vs. half-integer spin systems.

In this paper, we address these open issues by
analyzing different spin-S limit-cycle oscillators sub-
ject to a resonant semiclassical signal. For a given
limit-cycle stabilization mechanism, we find qualita-
tive differences in the synchronization behavior of
half-integer vs. integer spins. While this is reminis-
cent of the famous spin-statistics theorem, we show
that these differences can actually be traced back to
the presence (absence) of an eigenstate |S, 0〉 of the Ŝz
operator with eigenvalue zero for integer (half-integer)
spin number S. The presence or absence of the state
|S, 0〉 is also at the heart of other integer vs. half-
integer effects in quantum optics [27, 28], phase tran-
sitions in the Lipkin-Meshkov-Glick model [29, 30],
and quantum metrology [31, 32, 33, 34].

An important quantum effect is the phenomenon
of interference-based quantum synchronization block-
ade, which is the absence of synchronization due to
destructive interference of coherences, even though a
weak harmonic signal is applied to the limit-cycle os-
cillator [21]. It occurs at specific values of the rel-
ative strength of the dissipation rates, and we find
that the cases of integer and half-integer spins differ
in the number of synchronization blockades that can
be observed. This is due to the interplay between the
way a semiclassical signal builds up coherence in the
spin system and the structure of the limit cycle for
different spin numbers.

Our results show that there is indeed a difference
between integer and half-integer spins if limit cycle
and signal are kept fixed while the spin number S is
changed. However, we also find that the situation is
entirely different if one is allowed to change the limit
cycle for each S. In this case, a half-integer vs. integer
effect appears to be absent in the maximum amount
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of quantum synchronization that can be achieved in
a spin-S system.

This paper is organized as follows. We first present
the model and framework of quantum synchronization
in Sec. 2, highlighting the difference in limit-cycle sta-
bilization between integer spins and half-integer spins.
Subsequently, in Sec. 3, we present results on the
synchronization of a spin- 3

2 and spin-2 system and
show how the anti-symmetrical generation of coher-
ences leads to synchronization blockade. In Sec. 3.3
and Sec. 4, we show respectively how the choice of
a different signal strength and a different limit cy-
cle affect synchronization. In Sec. 5, we discuss our
numerical results for the synchronization measure for
different spin values (S = 1 to S = 3) and different
(types of) limit cycles and compare them to an ana-
lytical upper bound that is derived in App. C. Finally,
we summarize and draw our conclusions in Sec. 6.

2 Model
In classical physics, a limit-cycle oscillator is a sys-
tem that is excited into self-sustained periodic motion
with a free phase by an internal source of energy [1].
When different limit-cycle oscillators are weakly cou-
pled, they may adjust their oscillations to a common
frequency, which is called mutual synchronization. Al-
ternatively, a single limit-cycle oscillator may adjust
its oscillation to a weak external signal, which is called
entrainment. Different ways to generalize these con-
cepts to the quantum realm have been proposed, e.g.,
using information-theoretic measures to quantify cor-
relations between mutually synchronized limit-cycle
oscillators [35, 36, 18, 37, 38] as well as coherence
in an entrained oscillator [38], and measures of the
localization of (relative) phases [6, 39, 4, 40]. We con-
sider a quantum limit-cycle oscillator implemented in
a spin-S system and use a framework that general-
izes the definition of a classical limit-cycle oscillator
to the quantum realm based on its phase-space dy-
namics [19, 21].

In this framework, a quantum limit-cycle oscillator
is a quantum system which oscillates with a certain
amplitude at its natural frequency ω0. The amplitude
is stabilized by dissipative gain and loss processes such
that the phase of oscillation is completely free and can
be adjusted by a weak external signal with a (poten-
tially different) frequency ω. In a spin system, the
natural frequency of oscillation of the limit-cycle os-
cillator is set by the level splitting ω0. We consider
an external semiclassical signal of amplitude ε and
frequency ω, such that the Hamiltonian of the system
in a frame rotating at the signal frequency is given by

Ĥ = ∆Ŝz + εŜy . (1)

Here, ∆ = ω0−ω is the detuning between the external
signal and the natural frequency of oscillation. In

Figure 1: Schematic of a spin-1 limit-cycle oscillator stabi-
lized to the equatorial state |S = 1,m = 0〉 by the SymLC
stabilization scheme (a) and a spin- 3

2 limit-cycle oscillator
with two different stabilization schemes (b), (c). Wavy lines
represent dissipative processes: red lines indicate gain pro-
cesses while blue lines represent loss processes; the interplay
of the two kinds of processes defines the limit-cycle state.
The thickness of the lines corresponds to the relative tran-
sition rates of the individual oscillators. (b) SymLC stabi-
lization scheme as defined by Eq. (4), with the steady state
dependent on the values of γg and γd. (c) Limit cycle sta-
bilized by the set of modified jump operators Ŝ±(Ŝz + 1/2)
(AsymLC scheme) resulting in the steady state |3/2,−1/2〉,
independent of the values of γg and γd.

this paper, we focus on the resonant limit ∆ = 0 for
all numerical simulations. Ŝj , j ∈ {x, y, z}, are the
spin operators of a spin-S system, which fulfill the
commutation relations [Ŝi, Ŝj ] = iεijkŜk. A basis of
the Hilbert space is given by the states |S,m〉, m ∈
{−S, . . . , S}, which are the joint eigenstates of Ŝ2 =
Ŝ2
x + Ŝ2

y + Ŝ2
z and Ŝz.

To visualize the state of the limit-cycle oscillator
and to quantify synchronization, it is instructive to
use a phase-space representation. Following Ref. [19],
we use the Husimi Q function, which is defined for a
spin-S system as

Q(θ, φ) = 2S + 1
4π 〈θ, φ| ρ̂ |θ, φ〉 . (2)

Apart from a scale factor, Eq. (2) is the expectation
value of the density matrix ρ̂ with respect to spin-
coherent states |θ, φ〉 = exp(−iφŜz) exp(−iθŜy) |S, S〉
[41]. The angles θ and φ parameterize the amplitude
and the phase of the state respectively. A measure of
quantum synchronization can thus be obtained from
the marginal distribution of the phase,

S(φ) =
∫ π

0
dθ sin θ Q(θ, φ)− 1

2π . (3)

The last term subtracts the value of a uniform phase
distribution, such that S(φ) is zero everywhere in
the absence of synchronization, while a positive value
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S(φ) > 0 indicates phase accumulation at φ. Explicit
expressions for Q(θ, φ) and S(φ) for arbitrary spin S
are given in App. A and below. Being a probability
distribution for the phase φ, S(φ) offers a straight-
forward interpretation and can be used to identify
switching between multiple synchronized states at dif-
ferent phases (which otherwise requires simultaneous
use of multiple synchronization measures [40]). If
needed, Eq. (3) can be further reduced to a single-
number measure of quantum synchronization by con-
sidering its maximum value maxφ S(φ). An upper
bound on maxφ S(φ) is derived in App. C. Note that
Eqs. (2) and (3) can be generalized to multipartite
systems, which allows one to quantify relative phases
in the context of mutual synchronization. Scenarios
with dissimilar subsystems, as discussed in Ref. [38],
can also be addressed if a function Q can be defined
for each subsystem.

The amplitude of oscillation is stabilized by inco-
herent gain and loss processes that can be modeled
by a Lindblad master equation

˙̂ρ = −i[Ĥ, ρ̂] + γgD[Ôg]ρ̂+ γdD[Ôd]ρ̂ , (4)

where the dissipators are defined as D[Ô]ρ̂ = ÔρÔ†−
1
2{Ô

†Ô, ρ̂}. The jump operators Ôg and Ôd represent
the incoherent gain and loss processes at the respec-
tive rates γg and γd. The structure of the limit cycle
(which is the steady state of Eq. (4) in the absence of
a signal, ε = 0) depends on the specific choice of the
jump operators Ôg and Ôd. They must be invariant
up to a phase factor under rotations about the quan-
tization axis (in our case, the z-axis) to avoid any
phase preference of the limit cycle [21]. The extremal
states |S,±S〉 have zero amplitude, therefore, a valid
limit cycle should always include a non-extremal state
|S,m〉 with |m| < S. This precludes spin-1/2 sys-
tems to host a limit-cycle oscillation in this framework
[19]. In addition, spin-1/2 systems cannot exhibit the
interference-based quantum synchronization blockade
effect we are interested in. Note that one can still de-
fine effective descriptions of quantum limit-cycle os-
cillators in terms of two-level systems by excluding
certain spin states from the dynamics [36], by focus-
ing only on the phase dynamics [14], or by considering
a different definition of a quantum limit-cycle oscilla-
tor [37, 42].

The simplest set of jump operators which fulfills all
the requirements mentioned above for a spin-1 sys-
tem is given by Ôg = Ŝ+Ŝz and Ôd = Ŝ−Ŝz, where
Ŝ± = Ŝx ± iŜy are the spin ladder operators. The
jump operator Ôd (Ôg) provides no transition rate
downwards (upwards) from the level |1, 0〉, i.e., popu-
lation is transferred towards the |1, 0〉 level and subse-
quently trapped there, see Fig. 1(a). As a result, the
limit cycle is independent of the specific values of γg
and γd. More generally, for any integer spin S, this
particular set of jump operators stabilizes the limit-
cycle state |S, 0〉, which is localized at the equator of
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0.2

0.3

0.4

0.5

0.1

0.2

0.3

Figure 2: Husimi Q function (top) and population P (m) of
the spin states |S,m〉 (bottom) for the limit-cycle state for
spins S = 3/2 and S = 1 (last row, left). The m-th level
corresponds to the states m = {3/2, 1/2,−1/2,−3/2} for
S = 3/2 andm = {1, 0,−1} for S = 1 respectively. For S =
3/2, the uniform phase distribution (first row) indicates a
valid limit cycle for both values of dissipation rates, γg/γd =
0.1 (left) and γg/γd = 1 (right). The second row (red)
clearly shows the dependence of the populations P (m) on the
dissipation rates in a half-integer spin system with the SymLC
stabilization scheme sketched in Fig. 1(b). In contrast, in the
third row (blue) that corresponds to the SymLC stabilization
schemes for a spin S = 1 [sketched in Fig. 1(a)] and the
AsymLC stabilization scheme for a spin S = 3/2 [sketched
in Fig. 1(c)], the limit-cycle states are independent of the
dissipation rates.

a spherical projection of the Husimi Q function.

In contrast, the same set of dissipators stabilizes
a half-integer spin very differently. The transition
rates between the spin levels due to the jump op-
erator Ŝ−Ŝz (Ŝ+Ŝz) decrease down (up) the ladder
of spin states, but every level has nonzero transition
rates to neighboring states, as shown in Fig. 1(b). As
a consequence, population is not trapped in a partic-
ular spin state |S,m〉 and the steady state is generally
dependent on the dissipation rates.

Note that there is a symmetry between the gain and
loss processes: for each gain process up the ladder of
states, say, from |S,m〉 to |S,m+ 1〉, there is a corre-
sponding loss process down the ladder from |S,−m〉
to |S,−m− 1〉, scaled by their respective rates γg and
γd. This symmetry is present for both integer and
half-integer spins [Fig. 1(a) and (b)]. Therefore, we
refer to the set of dissipators Ôg = Ŝ+Ŝz, Ôd = Ŝ−Ŝz
as the gain-loss-symmetric limit-cycle (SymLC) sta-
bilization scheme in the following.

As an illustration, the limit cycle stabilized by these
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operators in a spin-3/2 system has the form

ρ̂ss = Ndiag

(
γ3

g

γ3
d
, 9
γ2

g

γ2
d
, 9γg

γd
, 1
)
, (5)

where N is a normalization constant such that
tr(ρ̂ss) = 1. For balanced dissipation rates γg/γd = 1,
the statistical weights of the |3/2,±1/2〉 states are the
greatest and the Husimi Q function is centered about
the equator, as shown in Fig. 2. For imbalanced dis-
sipation rates γg/γd = 0.1, however, the statistical
weights of the states |3/2,−1/2〉 and |3/2,−3/2〉 are
the greatest and the Husimi Q function is localized in
the vicinity of the south pole. The gain-loss symmetry
is evident when one applies the exchange transforma-
tion γg ↔ γd, resulting in ρm,m = ρ−m,−m.

In the next section, we analyze the different syn-
chronization behavior of the SymLC scheme for in-
teger and half-integer spins. In Section 4, we show
that by slightly modifying the dissipators and break-
ing the symmetry between gain and loss processes, we
can stabilize the limit cycle to a non-equatorial state
which can lead to qualitatively different quantum syn-
chronization behavior.

3 Gain-loss-symmetric limit-cycle sta-
bilization
In this section, we compare the synchronization be-
havior of the SymLC stabilization scheme for differ-
ent spin numbers S. For a spin-1 system, it has been
shown that the SymLC is unable to synchronize to a
semiclassical drive if its dissipation rates are balanced,
γg/γd = 1, due to destructive interference of the co-
herences built up by the signal [21]. This so-called
synchronization blockade can be lifted by choosing
imbalanced dissipation rates, γg/γd 6= 1. We now
show that higher spins S > 1 exhibit an even richer
synchronization blockade behavior. To gain an initial
understanding of how synchronization changes with
the next larger spin values, we fix the external signal
strength relative to the minimum of the dissipation
rates,

ε1 = ηmin(γg, γd). (6)

Here, η is a small parameter chosen such that the
external signal remains a perturbative effect on the
limit cycle.

In Fig. 3, we have plotted maxφ S(φ) over a large
range of ratios of dissipation rates for the different
spin values. For all studied spin numbers (S =
1, 3/2, 2), we observe that maxφ S(φ) vanishes at
γg = γd corresponding to the synchronization block-
ade known from S = 1. However, we see that un-
like in the S = 1 case, choosing imbalanced dissipa-
tion rates never completely lifts the synchronization

10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3
0

0.05

0.1

0.15

0.2

0.25

Figure 3: Maximum of phase distribution S(φ)/η vs. ratio of
dissipation rates γg/γd, for spin values S = 1 (black), 3/2
(red), and 2 (blue), under the SymLC stabilization scheme
and a semiclassical signal. The synchronization blockade per-
sists at balanced rates γg/γd = 1 for all spin values, with an
additional blockade for S = 3/2 appearing at intermediate
ratios γg(d)/γd(g) ∼ 10−1. By defining the signal strength ε2
as described in Sec. 3.3, a larger signature of synchronization
is achieved in general. In particular, for S = 3/2, the ε2 drive
lifts the blockade at large dissipation ratios γg(d) � γd(g)
(dashed line). The other parameters are η = 0.01 and ∆ = 0.

blockade for both S = 3/2 and S = 2, and the syn-
chronization measure remains suppressed for largely
imbalanced rates. Furthermore, we observe an addi-
tional suppression of the synchronization measure at
an intermediate ratio of dissipation rates for S = 3/2.
These phenomena can be understood by studying how
coherences are generated as a result of the semiclassi-
cal drive.

3.1 Synchronization measure for arbitrary spin
number S

To understand the connection between the coherences
and the measure of quantum synchronization, we ex-
press the marginal phase distribution S(φ) for arbi-
trary spin S as follows

S(φ) =
S∑

m,m′=−S
e−i(m−m

′)φdSm,m′ρm′,m. (7)

The coefficients dSm,m′ can be expressed in terms of
elements of the Wigner D-matrix, with the ampli-
tude degree of freedom θ integrated out (see App. A
for details and explicit expressions). There are 2S
oscillatory terms in Eq. (7), each corresponding to
a particular wavenumber k = m − m′. The ampli-
tude of each of these terms depends on the prefac-
tors dSm,m′ and the coherences ρm′,m = 〈S,m′| ρ̂ |S,m〉
between all spin eigenstates |S,m′〉 and |S,m〉 with
k = m−m′. In addition, the prefactors fulfill the re-
lation dSm,m′ = dS−m′,−m, implying that the coherences
ρm′,m and ρ−m,−m′ contribute equally to S(φ). In the
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special case when all those pairs of coherences inter-
fere destructively, ρm′,m = −ρ−m,−m′ , the amplitude
of the term e−ikφ vanishes and the synchronization
measure is suppressed even though each individual
coherence is nonzero. We show next that the points
where the synchronization measure is suppressed in
Fig. 3 are precisely caused by such an interference-
based quantum synchronization blockade.

3.2 Coherence generation in the SymLC stabi-
lization scheme

Projecting Eq. (4) onto the spin eigenstates |S,m〉,
the steady-state coherence between adjacent spin
states, to leading order ε, is

ρn,n−1 = εA−n
2i∆ + γd

[
(n− 1)2(A−n−1)2 + n2(A−n )2

]
+ γg

[
(n− 1)2(A+

n−1)2 + n2(A+
n )2
] × [ρn,n − ρn−1,n−1] , (8)

where A±m =
√
S(S + 1)−m(m± 1) denotes the ma-

trix elements of the spin raising and lowering opera-
tors, Ŝ± |S,m〉 = A±m |S,m± 1〉. A derivation of this
expression is given in App. B. We used the result that,
to leading order in the signal strength, only the first
off-diagonal coherences are built up, ρn,n±1 = O(ε)
but ρn,n±k = O(ε2) for k ≥ 2. Additionally, we used
the identity A+

m−1 = A−m to simplify the expression.
For a spin-1 SymLC, this expression reproduces the

known results [21]

ρ1,0 = −ε 1√
2(γd + i∆)

, (9)

ρ0,−1 = +ε 1√
2(γg + i∆)

. (10)

These coherences cancel out exactly for γg = γd. In
the limit γg/γd � 1 and for a resonant semiclassical
signal with the signal strength defined by Eq. (6), the
coherence ρ1,0 ∝ ηγg/γd ≪ 1 is strongly suppressed
whereas the other coherence tends to the constant
value ρ0,−1 = η/

√
2. The perfect destructive interfer-

ence at γg = γd is thus lifted and the synchronization
measure increases. The same effect occurs in the op-
posite limit γg/γd � 1, where ρ0,−1 ∝ ηγd/γg ≪ 1 is
suppressed but ρ1,0 = −η/

√
2.

We now consider higher integer spins, S ≥ 2. Equa-
tion (8) shows that they must exhibit the same syn-
chronization blockade for balanced dissipation rates
γg = γd: The first factor in Eq. (8) is invariant under
the simultaneous transformation

n = S −m↔ n = −S +m+ 1 ,
γg ↔ γd , (11)

because the matrix elements A±m satisfy the symme-
try relation A+

S−m = A−−S+m. This transformation
“inverts” the ladder of spin states |S,m〉 about the
state |S, 0〉, i.e, it exchanges the populations ρ1,1 ↔
ρ−1,−1, ρ2,2 ↔ ρ−2,−2, etc., as well as the coherences
ρ1,0 ↔ ρ0,−1, ρ2,1 ↔ ρ−1,−2, etc. Since the limit cy-
cle is given by the state |S, 0〉, we have ρn,n = δn,0

and the second factor changes sign under this trans-
formation. Therefore, every pair of “opposite” coher-
ences cancels. More generally, any limit cycle that
is symmetric under the transformation (11) will show
interference-based quantum synchronization blockade
for balanced dissipation rates since

ρS−m,S−m−1

ρ−S+m+1,−S+m|γg↔γd

= − ρS−m,S−m − ρS−m−1,S−m−1

[ρ−S+m,−S+m − ρ−S+m+1,−S+m+1]γg↔γd

= −1 . (12)

The left-hand side is the ratio between two coherences
which are equally many levels below and above the
extremal spin states |S, S〉 and |S,−S〉, respectively.
The right-hand side relates this ratio to the difference
between the populations of the spin levels connected
by the two coherences, i.e., it depends on the proper-
ties of the limit-cycle state.

Equation (8) also reveals another difference be-
tween the case of S = 1 and higher integer spins. For
any S ≥ 2, all coherences ρn,m will in general depend
on both γd and γg because both jump operators Ôg
and Ôd mediate transitions away from the associated
spin levels |S, n〉 and |S,m〉. For instance, for S = 2,
we have

ρ1,0 = −ε
√

3/2
3γd + 2γg + i∆ , (13)

ρ0,−1 = +ε
√

3/2
3γg + 2γd + i∆ . (14)

The presence of both decay rates in the denominator
implies that, for imbalanced dissipation rates and a
signal strength ε1 defined by Eq. (6), both coherences
will scale proportionally to min(γg, γd)/max(γg, γd).
As a result, at largely imbalanced dissipation rates,
synchronization will be suppressed, in contrast to the
S = 1 case where it converged to a constant value
determined by one of the two coherences.

Note that for integer spin, a semiclassical signal,
and the SymLC stabilization scheme, there is only
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one synchronization blockade at balanced dissipation
rates. For γg 6= γd, the first term in Eq. (8) loses its
inversion symmetry but the limit cycle remains fixed
and thus keeps its inversion symmetry. Therefore, no
further cancellations of coherences are expected.

This changes if we now move on to the case of half-
integer spins, S ≥ 3/2. Equation (8) is valid for half-
integer spins, too, and, for balanced dissipation rates,
the SymLC stabilization scheme generates a limit cy-
cle which is symmetric under the transformation (11).
Therefore the coherences form pairs of opposite sign
which interfere destructively, similar to the case of
integer spin. Note that the only unpaired coherence
ρ1/2,−1/2 = 0 vanishes because the populations of the
levels |S, 1/2〉 and |S,−1/2〉 are identical. We there-
fore obtain an interference-based quantum synchro-
nization blockade for γg = γd for half-integer spins,
too. Unlike in the case of integer spin, however, the
structure of the limit cycle changes depending on the
ratio of the dissipation rates [an example for S = 3/2
is shown in Eq. (5)]. Consequently, specific values of
the imbalance ratio γg/γd can lead to additional re-
vivals of synchronization blockade when the specific
values of the population differences accidentally com-
pensate the amplitude and phase differences due to
the first term in Eq. (8). For example, for S = 3/2,
the phase distribution to leading order in perturbation
theory has roots at γg/γd ∈ {0.108, 1, 9.25}, which
reproduces well the numerically observed blockades
for S = 3/2. Near the region of the second block-
ade γd(g)/γg(d) ≈ 10−1, the populations of the states
|3/2, (−)1/2〉 and |3/2, (−)3/2〉 are maximal. While
one may in principle expect even more blockades for
higher spin, numerically, we only observed up to 3
blockades for the considered spin numbers S ≤ 3.

The discussion of the SymLC stabilization scheme
so far leads to two conclusions. First, the dissipation-
rate dependence of the limit-cycle state for half-
integer spin gives rise to additional synchronization
blockades at certain imbalance ratios of the dissipa-
tion rates. They can be removed by a modification
of the jump operators such that the limit cycle be-
comes independent of the dissipation rates even for
half-integer S, which is discussed in Sec. 4. Second,
the definition ε1 of the signal strength causes the semi-
classical signal to be overwhelmed by the dissipative
limit-cycle stabilization for largely imbalanced dissi-
pation rates. This shows that the definition ε1 (which
worked well for the case S = 1) is too restrictive for
S > 1 and causes the signal to be unnecessarily weak.
In the following section, we remedy this shortcoming
by considering a different definition of a weak signal.

3.3 Different definition of the signal strength
The analysis of the previous section revealed that the
definition ε1 of a weak signal is too restrictive for
higher spins S > 1: In the limit of strongly im-

balanced dissipation rates, the signal cannot com-
pete with the dissipative processes suppressing the
coherences and the synchronization measure vanishes.
Rather than defining the signal strength only in terms
of the dissipation rates entering Eq. (4), it is better
to focus on the susceptibility of the limit cycle to de-
formations caused by an applied signal. One such
measure has been proposed in Ref. [21], which com-
pares the rates at which coherences are built up by
the signal to their damping rates due to the stabiliza-
tion of the limit cycle. Its definition requires explicit
knowledge of the coefficients of the steady-state den-
sity matrix expanded in powers of the signal strength
ε, i.e., an analytical solution of the steady-state den-
sity matrix.

Here, we consider a modified version of this measure
which can be evaluated numerically. Given a small
parameter η � 1 which ensures that the signal is a
weak perturbation to the limit-cycle stabilization, the
corresponding signal strength ε2 is implicitly defined
by

η = ||ρ̂(ε2)− ρ̂(0)||
||ρ̂(0)||

, (15)

where ρ̂(0) ≡ ρ̂(ε = 0) is the limit-cycle state, and

||Ô|| =
√

tr(Ô†Ô) is the Hilbert-Schmidt norm. The
right-hand side of Eq. (15) can be evaluated numeri-
cally for different signal strengths ε and the value ε2
satisfying Eq. (15) can be found by interpolation. In
the following, we choose η = 0.01.

Using this definition of the drive strength ε2, we
show in Fig. 3 (red dashed line) the resulting phase
distribution for S = 3/2. The blockade regimes re-
main the same but the suppression of S(φ) at largely
imbalanced dissipation rates has been lifted. Com-
pared to ε1, the maximum of S(φ) is larger with the
ε2 definition, and comparable to that of S = 1 at large
dissipation rates.

4 Gain-loss-asymmetric limit-cycle
stabilization
In Sec. 3, we found that a semiclassical drive com-
bined with the SymLC stabilization scheme leads to
qualitatively different synchronization blockade pat-
terns depending whether the spin S is integer or half-
integer. For integer spins, the limit cycle is always
the |S, 0〉 state and a single synchronization blockade
occurs at γg = γd. For half-integer spins, the struc-
ture of the limit cycle depends on the ratio γg/γd such
that two additional blockades at specific ratios of the
dissipation rates occur. The additional blockades are
due to the fact that the structure of the limit cycle
depends on the dissipation rates.

This dependence of the limit cycle on the dissipa-
tion rates for half-integer spin can be eliminated by
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Figure 4: Maximum of phase distribution S(φ) vs. ratio
of dissipation rates γg/γd for spin S = 3/2. The red lines
show the case of the gain-loss symmetric LC stabilization
(SymLC), while the blue lines show the case of stabilization to
the |m = −1/2〉 state (AsymLC). An external semiclassical
signal is applied and the other parameters are η = 0.01 and
∆ = 0.

considering a generalized set of jump operators de-
fined as ÔMg = Ŝ+(Ŝz −M) and ÔMd = Ŝ−(Ŝz −M).
Now, the jump operators ÔMg (ÔMd ) do not provide
any transitions up (down) from the level |S,M〉, as
shown in Fig. 1(c) for M = −1/2. Similar to the
SymLC scheme for integer spin, we thus have a unique
limit cycle |S,M〉, which is independent of the ratio
γg/γd. A nonzero value of M 6= 0 breaks the symme-
try between dissipation rates going up and down the
ladder of spin states, which we identified previously
in the SymLC scheme. Therefore, we call this scheme
the gain-loss-asymmetric limit-cycle (AsymLC) sta-
bilization scheme. The dissipators used previously for
the SymLC scheme correspond to the case M = 0,
i.e., Ôg,d = ÔM=0

g,d .
One may expect that the synchronization blockade

of this AsymLC in a half-integer spin system should
follow the same pattern as the blockade of a SymLC
in an integer spin system. Interestingly, this is not
the case: In Fig. 4, we compare the maximum of S(φ)
over a large range of dissipation rates between dif-
ferent limit cycles for S = 3/2. At γg = γd, the
blockade has been lifted for both ε1 and ε2, with the
synchronization measure increased by two orders of
magnitude compared to its small residual value for a
SymLC (which is due to higher-order effects in the
signal strength). For γg � γd, the maximum of S(φ)
approaches an asymptotic value, whereas in the op-
posite limit, the synchronization measure is strongly
suppressed. Around γg/γd ≈ 7, a single synchroniza-
tion blockade remains.

This single synchronization blockade at γg/γd ≈ 7
is the equivalent of the unique synchronization block-
ade at γg = γd for integer spins, which can be seen as
follows. The relation (8) can be generalized to the case

of the new dissipators ÔMg,d (an explicit expression is
given in App. A). The appearance of the constant M
in the recursion relation breaks the inversion symme-
try which we identified in the case of integer spin. As
a consequence, no interference-based synchronization
blockade is expected for balanced dissipation rates
γg = γd. However, we still expect a synchronization
blockade for some ratio γg/γd since we essentially re-
produced the limit-cycle physics of an integer spin,
but now shifted and centered around the level |S,M〉:
The limit cycle is independent of the dissipation rates
and only the population ρM,M = 1 is nonzero such
that, to leading order in the signal strength ε, only the
coherences between the level |S,M〉 and |S,M ± 1〉
are built up,

ρM+1,M = − εA+
M

2i∆ + γd(A+
M )2 + γg(A+

M+1)2 , (16)

ρM,M−1 = +
εA+

M−1

2i∆ + γd(A+
M−2)2 + γg(A+

M−1)2 . (17)

Due to the broken inversion symmetry, we now have
to take into account the numerical weights dSm,m′ of
the coherences in the synchronization measure S(φ),
i.e, the condition for an interference-based synchro-
nization blockade is

S(φ) = 0⇔ dSM,M+1ρM+1,M + dSM−1,MρM,M−1 = 0 ,
(18)

where the numerical weights are defined in App. A.
For ∆ = 0, S = 3/2, and M = −1/2, the unique
solution of this condition is γg/γd = 20/3 ≈ 6.67,
which matches the observed blockade in Fig. 4.

Another feature in Fig. 4 is the very different level
of synchronization for largely imbalanced dissipation
rates. For γg/γd � 1, we observe a high level of
synchronization, similar to the case of a SymLC and
S = 1 in Fig. 3. However, synchronization is sup-
pressed in the opposite limit γg/γd � 1, similar to
the case of a SymLC and S = 2. For M = −1/2, this
feature is unique to the case of S = 3/2 and stems
from the fact that the limit-cycle state |3/2,−1/2〉 is
only one level away from the bottom end of the spin
ladder. Population in the level |3/2,−3/2〉 can only
decay via a gain process [see Fig. 1(b)], therefore, the
coherence ρ−1/2,−3/2 depends only on γg:

ρ−1/2,−3/2 = +ε 2
√

3
4i∆ + 3γg

. (19)

This dependence of the population on only a single
dissipation rate is similar to the case of a SymLC in
a S = 1 system. In contrast, population in the level
|3/2, 1/2〉 decays both via gain and dissipative pro-
cesses, therefore, the coherence ρ1/2,−1/2 depends on
both dissipation rates,

ρ1/2,−1/2 = −ε 4
4i∆ + 4γd + 3γg

, (20)
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Figure 5: Maximum of phase distribution S(φ) vs. ratio
of dissipation rates γg/γd for integer spins S = 1 (black)
and S = 2 (red) stabilized by the AsymLC scheme for M =
−1/2, and S = 2 stabilized stabilized by the AsymLC scheme
for M = −1, i.e., to the state |m = −1〉 (blue). All systems
are driven by an external semiclassical signal with strength
ε2. The other parameters are η = 0.01 and ∆ = 0.

like coherences in a SymLC stabilization scheme for
S = 2. Focusing for simplicity on the ε1 definition of
the signal strength, the coherences on resonance thus
scale like

ρ−1/2,−3/2 ∝
min(γg, γd)

γg
, (21)

ρ1/2,−1/2 ∝
min(γg, γd)
max(γg, γd) . (22)

As a consequence, ρ1/2,−1/2 is always suppressed for
largely imbalanced dissipation rates, but ρ−1/2,−3/2
tends to a constant value if γg � γd and maxφ S(φ)
remains finite. In contrast, for higher half-integer
spins S ≥ 5/2 stabilized to the same state |S,−1/2〉,
synchronization will decrease in the limit γg/γd � 1,
too.

It is, likewise, possible for integer spins to be sta-
bilized differently by setting a nonzero value of M ,
resulting in an AsymLC stabilization scheme. The
modified jump operators Ô−Mg/d = Ŝ±(Ŝz + M) stabi-
lize an integer-spin system to the state |S,−M〉 for
integer-valuedM ; while stabilizing a dissipation-rate-
dependent limit cycle for half-integer-valued M . We
show instances of the AsymLC stabilization scheme
for integer spins S = 1 and 2 in Fig. 5. For S = 2
stabilized to the state |S,−1〉, we observe large syn-
chronization for γg/γd � 1 and suppressed synchro-
nization in the opposite limit γg/γd � 1, which is ex-
pected along similar reasoning as explained in the case
of S = 3/2. For the case of the stabilization scheme
Ô
M=−1/2
g/d , the limit cycles for S = 1 and S = 2 are

dependent on the ratio of the dissipation rates. The
S = 2 system retains some qualitative features of a
SymLC-stabilized S = 3/2 system: two regions of
synchronization blockade similar to the second block-

ade in the case S = 3/2, and large asymptotic syn-
chronization values at opposite extremes of the dissi-
pation ratios. For S = 1, we observe a single point
of blockade similar to that in the case of SymLC at
balanced rates. In both cases, the nonzero value of
M breaks the inversion symmetry, resulting in the
skewed nature of the synchronization measure along
the dissipation-ratio axis.

5 Comparison of different limit cycles
We summarize the results on the maximum of S(φ)
for the different oscillators in Fig. 6. Here, we use ε2
as the definition of the drive strength, and we opti-
mize both over φ and over a large range of dissipa-
tion ratios γg/γd, i.e., for each limit-cycle oscillator
we choose the ratio γg/γd that maximizes maxφ S(φ).
For a fixed limit-cycle stabilization scheme (i.e., fixed
M in the jump operators ÔMg/d), integer M gives rise
to a dissipation-rate-independent limit cycle for inte-
ger spins and a dissipation-rate dependent limit cycle
for half-integer spins, and vice versa for half-integer
M . These two types of limit cycle achieve very differ-
ent maximum levels of synchronization for integer vs.
half-integer spin number, as shown by the large oscil-
lations in the data points of the same type in Fig. 6.

In general, a dissipation-rate-dependent limit cy-
cle gives a larger synchronization measure than a
dissipation-rate-independent limit cycle for all spins
considered in this plot, for M = 0 (blue triangles)
and M = −1/2 (orange squares). Intuitively, this can
be understood by considering how many coherences
can contribute to the synchronization measure. For
a limit cycle given by a single energy eigenstate |M〉
(e.g., generated by the SymLC scheme for integer S
or theM = −1/2 AsymLC scheme for half-integer S),
only the two coherences ρM,M±1 can in principle con-
tribute to the synchronization measure. Moreover,
as discussed in Sec. 3.2, they have opposite phases
such that one of them has to be suppressed by choos-
ing largely imbalanced dissipation rates. In contrast,
for a limit cycle that is a mixture of different energy
eigenstates (e.g., generated by the M = −1 AsymLC
scheme for integer S or the SymLC scheme for half-
integer S), a semiclassical signal can in principle build
up all coherences on the first upper and lower diag-
onals. By optimizing the ratio γg/γd to maximize
their constructive interference, one can thus achieve a
higher level synchronization.

It is interesting to note that when one considers
a limit cycle stabilized to the state |m = −S + 1〉
(black empty circles), one reaches a comparable level
of synchronization as in the case of the dissipation-
rate-dependent limit cycles for all investigated spin
numbers S, even though dissipation-rate-independent
limit cycles show very low synchronization for S ≥ 2.
This is a generalization of the boundary effect dis-
cussed in Sec. 4: If the limit-cycle state is only one

Accepted in Quantum 2022-12-21, click title to verify. Published under CC-BY 4.0. 8



step away from the bottom (top) of the spin ladder,
the coherence between this state and the state at the
bottom (top) of the spin ladder depends only on a
single dissipation rate γg (γd) [as shown in Eq. (19)
for S = 3/2 andM = −1/2], and this coherence dom-
inates the synchronization behavior.

Figure 6 shows that specific combinations of limit
cycle and signal exhibit a pronounced integer vs. half-
integer effect. However, if one considers the maximum
level of synchronization across all limit-cycle stabiliza-
tion schemes for a given spin number S, all spin sys-
tems considered here are able to synchronize equally
well. This leads to the conjecture that a limit-cycle-
agnostic and signal-agnostic optimization may show
no difference in synchronization behavior between in-
teger and half-integer spins S. To further support this
conjecture and to put the numerical values of the op-
timized synchronization measure shown in Fig. 6 into
perspective, we derive in App. C an upper bound on
the synchronization measure by optimizing over φ and
all possible combinations of limit cycle and signal in
a spin-S system,

Smax = max
LC,signal,φ

S(φ) =
√

2η

√√√√ 2S∑
k=1

S−k∑
m=−S

(dSm,m+k)2 ,

(23)

where dSm,m′ are the coefficients of the synchronization
measure defined in App. A. This bound assumes that
all coherences that contribute to the same cos(kφ)
term in S(φ) interfere constructively and that the
relative strength of the coherences contributing to
terms with different k are chosen optimally. The cor-
responding results are shown by the purple asterisk
symbols and line in Fig. 6. We also plot a variant
of the bound where only the k = 1 term in Eq. (23)
is kept, i.e., only coherences ρm,m±1 on the first off-
diagonal are nonzero, like for a semiclassical signal.
The corresponding data is shown by the green aster-
isk symbols and line. Note that Smax does not show
any integer vs. half-integer oscillations.

6 Conclusion
In conclusion, we investigated quantum synchroniza-
tion of a single spin S ≥ 1 driven by an external semi-
classical signal. Using numerical simulations for spin
values up to S = 3, we showed that half-integer spins
synchronize differently under the SymLC stabilization
scheme. More specifically, half-integer spins show ad-
ditional quantum interference-based synchronization
blockades at certain imbalanced ratios γg/γd of the
dissipation rates. We presented an analytical descrip-
tion of this phenomenon, which reveals that a syn-
chronization blockade requires the interplay between
(i) the generation of coherences by the signal and (ii)
the distribution of populations in the limit cycle state.

1 3/2 2 5/2 3
0

0.2

0.4

0.6

Figure 6: Maximum of S(φ)/η for different spin values S
and different limit cycles defined by the set of operators
ÔMg = Ŝ+(Ŝz −M) and ÔMd = Ŝ−(Ŝz −M) for M = 0
(blue triangles), −1/2 (orange squares) and −S + 1 (black
empty circles), optimized over a large range of dissipation
ratios γg/γd. For integer (half-integer) spins, integer (half-
integer) M results in a dissipation-rate-independent limit-
cycle state |S,M〉; whereas integer (half-integer) spins sta-
bilized with half-integer (integer) M result in a dissipation-
rate-dependent limit cycle. In contrast, stabilizing to the
state |S,−S + 1〉 results in almost the same value in the
measure of synchronization for all values of S > 1 stud-
ied here. The upper bound of maxφ,γg/γd S(φ)/η given by
Eq. (23) is represented by purple asterisk symbols and takes
into account all coherences of the spin-S system. By taking
into account only coherences that contribute to the cos(φ)
term in S(φ) (which are the only coherences a semiclassical
signal can build up to leading order in ε), this bound can be
lowered, which is represented by the green asterisk symbols.
All limit-cycle oscillators are driven by a semiclassical signal
and the other parameters are η = 0.01 and ∆ = 0.

If only one of these factors changes as a function of the
dissipation rates, only a single synchronization block-
ade is observed. For a SymLC stabilization scheme,
it occurs at balanced dissipation rates, γg = γd, but
its position can be moved by using an AsymLC sta-
bilization scheme.

We also showed that a simple definition of the sig-
nal strength based on the minimum of the dissipation
rates is too restrictive for spin systems with higher
S ≥ 1. To achieve higher levels of quantum synchro-
nization, we proposed a more refined definition of the
signal strength which quantifies the actual deforma-
tion of the limit cycle in the presence of the signal.

More fundamentally, our results highlight that
one should naturally consider different stabilization
schemes for different spin numbers to achieve bet-
ter quantum synchronization. While the SymLC and
AsymLC stabilization schemes show large variations
in the maximum synchronization achievable for all S
between 1 and 3 and pronounced oscillations between
integer and half-integer spin number S, an appropri-
ate choice of the stabilization scheme for each spin
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S leads to comparable values of the synchronization
measure. This raises the interesting conjecture that
the maximum amount of synchronization is a mono-
tonic function of the spin number if one has full con-
trol over the limit cycle (i.e., one can realize dissipa-
tors that will stabilize an arbitrary target state), as
indicated by an upper bound on the synchronization
measure. Progress in this direction could be made by
proving the tightness of the bound on the synchro-
nization measure obtained by an optimization over
all possible limit-cycles and signals, which would also
shed light on the quantum-to-classical transition in
synchronization for very large spin number S.
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A Synchronization measure

In this appendix, we derive the analytical form of
the marginal phase distribution S(φ), as defined in
Eq. (3),

S(φ) =
∫ π

0
dθ sin θ Q(θ, φ)− 1

2π , (24)

where the Husimi Q function is defined in Eq. (2),

Q(θ, ϕ) = 2S + 1
4π 〈θ, φ| ρ̂ |θ, φ〉 . (25)

The spin-coherent states are given by [21, 43]

|θ, φ〉 = e−iφŜze−iθŜy |S, S〉

=
S∑

m=−S
DS
m,S(φ, θ, 0) |S,m〉 , (26)

where we defined

DS
m,S(α, β, γ) = 〈S,m| e−iαŜze−iβŜye−iγŜz |S, S〉 .

(27)

The elements of the WignerD matrix can be rewritten
as DS

m,S(φ, θ, 0) = e−imφDS
m,S(0, θ, 0), which can be

further evaluated using the relation [44]

DS
m,S(0, θ, 0)

=

√
(2S)!

(S +m)!(S −m)! cos
(
θ

2

)S+m
sin
(
θ

2

)S−m
.

(28)
The explicit expression for the Husimi Q function is
thus

Q(θ, ϕ) =
∑
m,m′

e−i(m−m
′)φqSm,m′ρm′,m , (29)

qSm,m′ = 2S + 1
4π DS

m,S(0, θ, 0)DS
m′,S(0, θ, 0) . (30)

Using this result, we now perform the integration in
S(φ),∫ π

0
dθ sin θ Q(θ, φ) =

∑
m,m′

e−i(m−m
′)φcSm,m′ρm′,m ,

(31)

where the coefficients cSm,m′ are given by

cSm,m′ =
∫ π

0
dθ sin θ qSm,m′ = 2S + 1

4π

×
2(2S)!Γ

(
1 + S − m+m′

2

)
Γ
(

1 + S + m+m′

2

)
√

(S −m)!(S +m)!(S −m′)!(S +m′)!Γ(2 + 2S)
,

(32)

where Γ(x) is the Gamma function. Note that cSm,m =
1/2π. Using the definition Eq. (3), we therefore find

S(φ) =
∑
m,m′

e−i(m−m
′)φdSm,m′ρm′,m , (33)

dSm,m′ = cSm,m′(1− δm,m′) . (34)

B Density-matrix elements for the
SymLC and AsymLC stabilization
scheme
In this appendix, we derive the density matrix ele-
ments of the steady state of the Lindblad master equa-
tion:

d
dt ρ̂ = −i[Ĥ, ρ̂] + γgD[ÔMg ]ρ̂+ γdD[ÔMd ]ρ̂ , (35)

where the Hamiltonian Ĥ is given by Eq. (1) and the
jump operators defined by ÔMg = Ŝ+(Ŝz −M) and
ÔMd = Ŝ−(Ŝz−M). These operators stabilize the spin
state |S,M〉, where M takes on integer numbers for
integer spins, and half-integer for half-integer spins.
When M = 0, we recover the SymLC stabilization
scheme given by Eq. (4).

Projecting this master equation on the spin eigen-
states |S,m〉, we find the following recursion relation
for the steady-state value of a particular coherence
ρn,m:
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ρn,m = 1
2i(n−m)∆ + γd

[
(m−M)2(A−m)2 + (n−M)2(A−n )2

]
+ γg

[
(m−M)2(A+

m)2 + (n−M)2(A+
n )2
]

×
[
2γg(n− 1−M)(m− 1−M)A−mA+

n−1ρn−1,m−1 + 2γd(n+ 1−M)(m+ 1−M)A+
mA
−
n+1ρn+1,m+1

+ ε
(
A−m+1ρn,m+1 +A−n+1ρn+1,m −A+

n−1ρn−1,m −A+
m−1ρn,m−1

) ]
,

(36)

where A±m =
√
S(S + 1)−m(m± 1) denotes the matrix elements of the spin raising and lowering operators,

Ŝ± |S,m〉 = A±m |S,m± 1〉. To turn this result into a closed expression for the coherences, we use the fact that
synchronization is a perturbative effect in the signal strength ε. In the absence of a signal, ε = 0, the limit-cycle
state must be a statistical mixture of the spin eigenstates, i.e., all coherences are zero. This is shown in Eq. (5)
for the specific case S = 3/2. The semiclassical signal generates transitions between the |S,m〉 states, but it can
only change the m quantum number in steps of one. Therefore, to leading order in the signal strength ε, only
the first off-diagonal coherences will be nonzero, ρn,n±1 = O(ε), and all other coherences will be suppressed
by at least another power of ε, ρn,n±k = O(ε2) for k ≥ 2. In this limit, we thus obtain to first order in ε the
explicit expression

ρn,n−1 = εA−n (ρn,n − ρn−1,n−1)
2i∆ + γd

[
(n−M − 1)2(A−n−1)2 + (n−M)2(A−n )2

]
+ γg

[
(n−M − 1)2(A+

n−1)2 + (n−M)2(A+
n )2
] ,

(37)

which generalizes Eq. (8) of the main text.

C Maximum synchronization

In this appendix, we derive an upper bound on the
synchronization measure S(φ) defined in Eq. (7) by
maximizing over all limit cycles and signals that can
be applied in a spin-S system. This generalizes a simi-
lar discussion given in Ref. [21] to arbitrary spin num-
ber S.

Our starting point is the following ansatz for the
steady-state density matrix in the presence of an ex-
ternal signal, expanded to leading order in the signal
strength ε,

ρ̂ss = ρ̂LC + ερ̂coh , (38)

where ρ̂LC contains the populations of the density
matrix (which are defined by the limit-cycle stabiliza-
tion scheme), (ρ̂LC)m,n = δm,nρm,n, and ρ̂coh contains
the coherences (which are due to the applied signal),
(ρ̂coh)m,n = (1− δm,n)ρm,n. Using Eq. (15), the value
of the signal strength ε ensuring that the signal is a
small perturbation to the limit-cycle stabilization dy-
namics is

ε = η
||ρ̂LC||
||ρ̂coh||

= η

√√√√ ∑S
m=−S ρ

2
m,m

2
∑2S
k=1

∑S−k
m=−S |ρm+k,m|2

,

(39)

where η � 1 is the small dimensionless expansion pa-
rameter ensuring that higher-order correction terms
to Eq. (38) are negligible. The synchronization mea-

sure (7) evaluated for the ansatz (38) is

S(φ) = ε

2S∑
k=1

[
S−k∑
m=−S

dSm,m+kρm+k,m︸ ︷︷ ︸
ak

eikφ + c.c.
]

= 2ε
2S∑
k=1
|ak| cos [kφ+ arg(ak)] , (40)

where we defined the weighted sum ak of all coher-
ences on the k-th diagonal above the main diagonal.
As discussed below Eq. (7), all coherences on the k-th
diagonal have the same wavenumber k = m−m′ and
contribute to the same cosine term.

We now combine Eqs. (39) and (40) and maximize
the result over all free parameters, i.e., the phase φ,
the distribution of population in the limit cycle, and
the magnitude and phase of each coherence,

Smax = max
{ρm,m′}

(
√

2η

√√√√ S∑
m=−S

ρ2
m,m

×
∑2S
k=1 |ak| cos[kφ+ arg(ak)]√∑2S

k=1
∑S−k
m=−S |ρm+k,m|2

)
.

(41)

Our first step is to adjust the global phase of coher-
ences along the k-th diagonal such that each ak ≥ 0 is
real. All cosine terms will then have a common max-
imum at φ = 0. Next, we adjust the relative phases
of coherences along the k-th diagonal such that all of
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them interfere constructively. We then find

√
2η

√√√√ S∑
m=−S

ρ2
m,m

∑2S
k=1 |ak| cos[kφ+ arg(ak)]√∑2S

k=1
∑S−k
m=−S |ρm+k,m|2

≤
√

2η

√√√√ S∑
m=−S

ρ2
m,m

∑2S
k=1 |ak|√∑2S

k=1
∑S−k
m=−S |ρm+k,m|2

≤
√

2η

√√√√ S∑
m=−S

ρ2
m,m

∑2S
k=1

∑S−k
m=−S d

S
m,m+k|ρm+k,m|√∑2S

k=1
∑S−k
m=−S |ρm+k,m|2

=
√

2η

√√√√ S∑
m=−S

ρ2
m,m

~d · ~ρ
|~ρ|

, (42)

where we defined the vectors ~d and ~ρ containing the
weights {dSm,m+k} and the magnitudes {|ρm+k,m|} of
the coherences. The last expression is maximized if
the magnitudes of the coherences are chosen such that
~d = ~ρ, which yields

√
2η

√√√√ S∑
m=−S

ρ2
m,m

~d · ~ρ
|~ρ|

≤
√

2η

√√√√ S∑
m=−S

ρ2
m,m

√√√√ 2S∑
k=1

S−k∑
m=−S

(dSm,m+k)2 . (43)

Finally, we optimize over the populations and obtain

Smax =
√

2η

√√√√ 2S∑
k=1

S−k∑
m=−S

(dSm,m+k)2 . (44)

The maximum is achieved if the limit-cycle oscilla-
tor is stabilized into a single energy eigenstate, which
is the case for the SymLC (AsymLC) stabilization
scheme for integer (half-integer) S.

Note that, in general, Eq. (44) only provides an
upper bound to the achievable synchronization mea-
sure since not all conditions on the optimal values of
coherences and populations may be satisfied simulta-
neously. For example, a semiclassical signal can only
generate coherences of the form ρn,n±1 to leading or-
der in ε such that one cannot benefit from the terms
with k 6= 2. Moreover, Eq. (37) shows that a semiclas-
sical signal can never generate a nonzero coherence
ρn,n−1 to leading order in ε if the corresponding pop-
ulations are identical, ρn,n = ρn−1,n−1. The optimal
population distribution, however, is achieved if the
limit-cycle oscillator is in a single energy eigenstate
and all other populations are zero. We do not discuss
the tightness of this bound for arbitrary S here and
only note that, for an S = 1 system, it has been shown
that Eq. (44) is actually a tight upper bound [21]. In
this case, the optimal spin-1 limit cycle is close to an
energy eigenstate with a small asymmetry that en-
sures that all population differences are nonzero.
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