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Nature isn’t classical, dammit,
and if you want to make a simulation of Nature,
you’d better make it quantum mechanical,
and by golly it’s a wonderful problem,
because it doesn’t look so easy.

Richard P. Feynman (1918 – 1988)
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Summary

In recent years, significant progress has been made to push micro-, nano-, and op-
tomechanical systems into the quantum regime. The common goal is to demonstrate
and control quantum effects in these systems, which enable applications in quantum
metrology and quantum information processing. This process is hampered by dissi-
pation, i.e., the interaction of these systems with their environment.

In this thesis, we focus on two different aspects of dissipative nonlinear systems in
the quantum regime. In the first part, we study how states with genuinely quantum
properties can be generated by a continuous measurement of the interaction between
the quantum system and its environment. This approach turns dissipation into a useful
tool to generate nonclassical states of light and matter, which have been identified as
important resources for quantum-enhanced sensing, quantum communication, and
quantum error processing. We discuss the generation of mechanical states with a sub-
Poissonian phonon-number distribution in an optomechanical phonon laser beyond the
resolved-sideband regime, and we propose a heralded protocol to generate nonclassical
states by photon-counting measurements. We apply this protocol to a Kerr nonlinear
oscillator and show that it enables the creation of states with a negative Wigner
function although the steady-state Wigner function of this system is strictly positive.

In the second part of this thesis, we focus on self-sustained oscillators in the
quantum regime. If a weak perturbation is applied to a self-sustained oscillator, the
oscillator can adjust its frequency of oscillation. This effect is called synchronization
and has been identified as a universal feature of many different complex classical
systems, e.g., electrical circuits, biological systems, and power grids. In recent years,
several theoretical proposals have been put forward to study synchronization in the
quantum regime. However, an experimental demonstration of quantum effects in
synchronization has still been missing.

We develop an analytical framework to study the synchronization of a quantum
self-sustained oscillator to an external signal. This framework establishes a unified
description of the above-mentioned proposals and allows us to identify the quantum-
mechanical resource of synchronization. Based on these findings, we discover a novel
interference-based quantum synchronization blockade effect and we derive a bound
on the maximum degree of synchronization that can be achieved in the quantum
regime. The framework also reveals a large freedom in tailoring a quantum system
that is able to synchronize. Taking advantage of this freedom, we propose alternative
implementations of quantum self-sustained oscillators that reduce the experimental
challenges.

Finally, we use digital quantum simulation to implement a quantum self-sustained
oscillator on a current quantum computer. Applying an external signal to the os-
cillator, we verify typical features of quantum synchronization, and we demonstrate
interference-based quantum synchronization blockade. Our results are the first ex-
perimental demonstration of genuinely quantum effects in synchronization and they
show that state-of-the-art noisy intermediate-scale quantum computers are powerful
enough to implement and study realistic dissipative quantum systems.
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Chapter 1

Introduction

Since the beginnings of quantum physics about one hundred years ago, quantum
technologies have revolutionized human life and society. The development of the first
transistor [Bardeen and Brattain, 1948] combined with the invention of integrated cir-
cuits laid the foundations of modern information processing. Lasers [Maiman, 1960]
have become an indispensable resource not only for scientific research, but also for
medicine, industry, and fast telecommunication. The development of light-emitting
diodes operating in the visible spectral range [Holonyak and Bevacqua, 1962] prepared
the ground for novel energy-efficient illumination concepts that gradually replace con-
ventional light bulbs. Finally, solar cells are an important pillar of renewable energy
production [Würfel and Würfel, 2016]. Large semiconductor and optical industries
emerged that keep refining their production techniques to fabricate artificial struc-
tures at the micro- and nanoscale.

In parallel, various subfields of physics developed that focus on particular aspects of
micro- and nanoscale devices, such as micro- or nanoelectromechanical systems [Ekinci
and Roukes, 2005], optomechanical systems [Aspelmeyer et al., 2014], superconducting
electrical circuits [Makhlin et al., 2001], and semiconductor quantum dots [Hanson
et al., 2007]. The Holy Grail of research activities in these fields is to demonstrate and
control quantum effects in micro- and nanoscale structures. This is hampered by the
fact that these structures interact with their environment, i.e., they are dissipative
systems. In general, dissipative processes carry away information on the quantum
state of a system and reduce quantum states to classical ones in a process called
decoherence [Zurek, 2003].

In the last years, increased understanding and meticulous reduction of decoher-
ence mechanisms led to impressive experimental demonstrations of quantum effects:
Superpositions of charge, flux, and spin states have been demonstrated [Nakamura
et al., 1999; Chiorescu et al., 2003; Koppens et al., 2006], which paved the way to the
development of quantum information processing devices based on superconducting cir-
cuits and quantum dots [Wendin, 2017; Zwanenburg et al., 2013]. In optomechanical
systems, coherent state transfer between the optical and the mechanical subsystems
has been demonstrated [Verhagen et al., 2012; Palomaki et al., 2013] and mechanical
oscillations have been cooled down to the mechanical ground state [Teufel et al., 2011;
Chan et al., 2011]. This experimental progress paves the way towards the genera-
tion of nonclassical states of light and matter, i.e., states with genuinely quantum
properties, which have been identified as an important resource for quantum sensing
[Degen et al., 2017; Pezzè et al., 2018] and quantum information processing [Nielsen
and Chuang, 2011].

Although dissipation usually degrades quantum states, it can also be turned into
a useful tool to generate nonclassical states. This is the subject of the first part of
this thesis, which is devoted to the generation of quantum states by measuring the
interaction between a dissipative system and its environment.
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An important subclass of dissipative systems are self-sustained oscillators. These
systems possess an internal source of energy that counteracts damping and excites
a periodic motion. The phase of this oscillation is free and can be influenced by a
weak external perturbation. This leads to an adjustment of the natural frequency of
oscillation of the self-sustained oscillator, which is called synchronization [Pikovsky
et al., 2003]. Synchronization has been discovered already in the 17th century, when
the Dutch physicist Huygens [1673] observed that pendulum clocks mounted on a
common wooden bar tick in unison. Since then, synchronization has been found to be
a universal feature of many very different nonlinear dynamical systems, e.g., electrical
circuits [Adler, 1946], biological systems [Aschoff, 1965; Buck and Buck, 1968; Néda
et al., 2000], and power grids [Dörfler et al., 2013].

Nonlinear systems at the micro- and nanoscale provide the exciting possibility
to study synchronization in the quantum regime. An important difference between
quantum and classical self-sustained oscillators is the unavoidable presence of noise
due to quantum fluctuations. In general, adding noise to a classical self-sustained os-
cillator decreases its ability to synchronize [Pikovsky et al., 2003], therefore, it is not a
priori clear whether synchronization phenomena will persist in the quantum regime.
Consequently, several proposals have been made to investigate this question using
superconducting circuits [Zhirov and Shepelyansky, 2006], optomechanical systems
[Ludwig and Marquardt, 2013; Walter et al., 2014], trapped ions [Lee and Sadegh-
pour, 2013], and nanomechanical oscillators [Holmes et al., 2012]. These theoretical
studies predicted that quantum synchronization will survive the detrimental effect of
quantum noise. However, an experimental demonstration of quantum synchroniza-
tion has been missing so far because of the challenge to engineer and control both
nonlinear dissipation and coherent interactions in a single experimental platform in
the quantum regime.

In the second part of this thesis, a mathematical framework for quantum synchro-
nization is developed that establishes a unified description of various experimental
platforms. This framework reveals a large freedom in tailoring a quantum system
that is able to synchronize. Alternative implementations of a quantum self-sustained
oscillator are proposed, which take advantage of this freedom to reduce experimen-
tal challenges, and methods of quantum computing are used to implement quantum
synchronization experimentally.

The continuous miniaturization of classical information-processing devices natu-
rally triggered question whether information processing would still be possible with
structures that are governed by the laws of quantum mechanics. Benioff [1980] an-
swered this question affirmatively and showed that the mathematical model of any
classical computation – the Turing machine – can be implemented in a quantum
system. Therefore, every calculation that can be performed efficiently on a classi-
cal computer can also be performed efficiently on a quantum computer. Feynman
[1982] pointed out that the converse statement is not true: Classical computers can-
not efficiently calculate the time evolution of a large quantum system, but Feynman
conjectured that this time evolution could be efficiently simulated using a quantum-
mechanical model of computation. Nowadays, this approach is called quantum simula-
tion and, more than ten years after Feynman’s conjecture, Lloyd [1996] finally proved
that a universal quantum computer can indeed efficiently simulate any other quantum
system that evolves according to local interactions.

Feynman’s conjecture and other predictions of advantages of quantum computers
over classical ones [Bennett and Brassard, 2014; Deutsch and Jozsa, 1992; Shor, 1997;
Grover, 1997] fueled a rapid development of quantum-information-processing devices
[Nielsen and Chuang, 2011]. Today, small quantum computers with up to 72 quantum
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bits are available [Kelly, 2018; Arute et al., 2019; McClure and Gambetta, 2019; Chow
and Gambetta, 2020; Rigetti, 2019], and some of them can even be controlled remotely
via the internet by any interested person. These devices are commonly referred to as
noisy intermediate-scale quantum computers [Preskill, 2018], since there is still a long
way to go towards the goal of a fully error-corrected universal quantum computer. De-
spite all imperfections of these devices, impressive results have already been obtained,
for instance, the first experimental demonstration of a significant quantum speedup
for a specific task that cannot be efficiently solved on classical hardware [Arute et al.,
2019; Pednault et al., 2019].

In this thesis, we will use quantum simulation techniques to implement quantum
synchronization dynamics on a current quantum computer. In this way, we will give
the first experimental demonstration of quantum synchronization and we will demon-
strate that current quantum hardware is powerful enough to implement and study the
dynamics of realistic dissipative quantum systems.

Overview of this thesis

Chapter 2 We will start by reviewing theoretical methods and techniques that are
necessary to understand the calculations presented in this thesis. Markovian quantum
master equations will be introduced as a powerful tool to describe dissipative quantum
systems.

As a preparation for the chapters on nonclassical state generation, we will describe
common experimental approaches to monitor the interaction of a quantum system with
its environment. We will derive a theoretical description of these continuous measure-
ments based on stochastic differential equations. Next, we will introduce phase-space
quasiprobability distributions as a tool to illustrate the state of a quantum system
and to quantify its degree of nonclassicality. We will also review the optomechani-
cal system and the Kerr nonlinear oscillator, which are two paradigmatic models of
nonlinear quantum systems that will be used in this thesis.

In preparation for the discussion of quantum synchronization, we will introduce
important concepts of classical synchronization and we will review the literature on
quantum synchronization measures. Finally, we will give an introduction to quantum
computing with a focus on digital quantum simulation.

Chapter 3 Having introduced the theoretical foundations, we will discuss methods
to generate nonclassical states in nonlinear dissipative quantum systems.

First, we will focus on the generation of mechanical states with a sub-Poissonian
phonon-number distribution in an optomechanical system. If an optomechanical sys-
tem is driven by a laser drive above resonance, mechanical oscillations arise. This
effect is called phonon lasing. It has been predicted that the steady-state phonon dis-
tribution of a phonon laser is sub-Poissonian if the system is operated in the resolved-
sideband regime, i.e., if the optical decay rate κ is much smaller than the mechanical
resonance frequency Ωmech. We will show that a continuous measurement of the
photons leaking out of the optical cavity can be used to generate nonclassical sub-
Poissonian mechanical states even outside the resolved-sideband regime, and we will
give a physical explanation for this effect.

Chapter 4 Next, we will shift our attention to another class of nonclassical states,
namely, quantum states with negative values in their Wigner phase-space quasiprob-
ability distribution. We will show that there are distinguished quantum states in the
time evolution induced by a photon-counting measurement. In a suitable parameter



4 1. Introduction

regime, the system will repeatedly converge towards these states despite the intrinsi-
cally stochastic dynamics due to the measurement process. We will use this effect to
define a quantum state preparation protocol. Applying this protocol to a Kerr non-
linear oscillator, we will show that the generated states can be nonclassical despite
the fact that the unconditional steady-state solution of a Kerr oscillator is strictly
positive.

Chapter 5 In the second half of this thesis, we will focus on quantum synchroniza-
tion.

We will start by developing a mathematical framework that provides a unified
description of the synchronization of a quantum self-sustained oscillator to an external
signal. This framework will allow us to identify the quantum-mechanical resource of
synchronization and to discover a novel genuinely quantum effect in synchronization,
namely, interference-based quantum synchronization blockade. A key element of the
framework will be a general rule how to determine the signal strength such that the
signal is only a weak perturbation to the self-sustained oscillation. This result will
open a panoply of new applications: First, it defines the hitherto unknown upper limit
of the synchronization region – the so-called Arnold tongue – in terms of the signal
strength. At the same time, it extends the range of definition of the Arnold tongue
and reveals that this tongue has actually a snake-like split structure. Second, this
rule can be used to compare the synchronization of different self-sustained oscillators
and signals. This will finally lead to the derivation of a tight upper bound on the
maximum synchronization that is possible in quantum regime. Along the way, we will
discover a variety of self-sustained oscillators that are presumably less challenging to
implement experimentally than the quantum van der Pol oscillator.

Chapter 6 Finally, we will take advantage of the results of Chapter 5 to demon-
strate quantum synchronization experimentally on a quantum computer. Focusing on
a simple self-sustained oscillator, we will construct a quantum algorithm that imple-
ments a digital quantum simulation of quantum synchronization dynamics. Testing
this algorithm on a state-of-the-art quantum computer, we will identify technical
restrictions of current quantum hardware that hinder its use for the simulation of
arbitrary dissipative quantum systems. However, the perturbative structure of the
quantum synchronization problem will allow us to modify the algorithm to circum-
vent these restrictions and to give the first experimental demonstration of quantum
synchronization. Our results show that state-of-the-art noisy intermediate-scale quan-
tum computers are able to study realistic dissipative quantum systems that have not
been realized experimentally before.

Chapter 7 Finally, we will give a summary of the main results of this thesis and we
will identify open questions for future research projects. This will relate our research
to other current problems in the fields of quantum optics and quantum computing.
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Chapter 2

Theoretical Background

In this chapter, we will introduce concepts of quantum optics and quantum com-
puting that are necessary to understand the calculations presented in this thesis. In
Section 2.1, we will introduce Markovian quantum master equations as a description of
dissipative quantum systems. Quantum master equations are obtained by embedding
the dissipative quantum system of interest into a larger closed quantum system. The
additional degrees of freedom describe the system’s environment and are integrated
out. In this step, all details of the interaction between the quantum system and its
environment are discarded. However, continuous measurements allow one to obtain
information on this interaction process. To account for this information, we will derive
stochastic quantum master equations in Section 2.2. Both in the discussion of non-
classical states and in the derivation of a framework for quantum synchronization, we
will have to illustrate quantum states. A convenient tool to accomplish this task are
phase-space quasiprobability distributions, which will be introduced in Section 2.3.
Subsequently, we will review the basic properties of the optomechanical system and
of the Kerr nonlinear oscillator in Sections 2.4 and 2.5, respectively. To put the dis-
cussion of quantum synchronization on solid ground, we will introduce the concept of
classical synchronization in Section 2.6 and we will review quantum synchronization
measures previously used in the literature. We end this chapter with an introduction
to quantum computing in Section 2.7, with a particular focus on digital quantum
simulation.

2.1 Modeling dissipative quantum systems

The theory of quantum mechanics has been developed to describe so-called closed
quantum systems, i.e., systems that conserve energy and evolve according to a uni-
tary time-evolution operator. However, a realistic quantum system is never perfectly
isolated from its environment. Instead, the quantum system typically exchanges en-
ergy or particles with its environment, which leads to a non-unitary time evolution
describing dissipation and decoherence. Often, the environment has many more de-
grees of freedom than the quantum system of interest and it can be assumed that the
quantum system interacts weakly with a very large number of densely-spaced envi-
ronmental modes. Such a situation is called a dissipative quantum system interacting
with a bath or reservoir. Each environmental mode is barely affected by the system,
but Caldeira and Leggett [1981] pointed out that the combined effect of the entire en-
vironment on the quantum system may still be strong. The effective dynamics of the
dissipative quantum system can be modeled by a quantum master equation (QME).
Following standard textbooks [Wiseman and Milburn, 2009; Carmichael, 2002; Breuer
and Petruccione, 2002], we will now sketch the main steps of the derivation of a QME
and we will discuss the underlying assumptions and approximations.
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To derive a QME, we consider an enlarged system that consists of the quantum
system S and its environment E, i.e., all environmental modes that interact with S.
This combined system S+E is considered to be a closed system, described by a density
matrix ρ̂SE. The unitary time evolution of ρ̂SE is

d

dt
ρ̂SE(t) = − i

~

[
ĤS + ĤE + ĤC, ρ̂SE(t)

]
,

where ĤS and ĤE are the Hamiltonians of the quantum system and its environment,
respectively, and ĤC describes the coupling between S and E. Our goal is to derive
an effective equation of motion for the reduced density matrix of the system ρ̂S(t) =
TrE [ρ̂SE(t)]. For simplicity, we will work in the interaction picture with respect to
ĤS + ĤE,

ρ̃SE(t) = ei(ĤS+ĤE)(t−t0)/~ρ̂SE(t)e−i(ĤS+ĤE)(t−t0)/~ , (2.1)

H̃C(t) = ei(ĤS+ĤE)(t−t0)/~ĤCe
−i(ĤS+ĤE)(t−t0)/~ , (2.2)

where the unitary time evolution takes the more compact form

d

dt
ρ̃SE(t) = − i

~

[
H̃C(t), ρ̃SE(t)

]
. (2.3)

Equation (2.3) can be rewritten as an integro-differential equation,

d

dt
ρ̃SE(t) = − i

~

[
H̃C(t), ρ̃SE(t0)

]
− 1

~2

∫ t

t0

dt′
[
H̃C(t),

[
H̃C(t′), ρ̃SE(t′)

]]
. (2.4)

We now use the assumption that the system S and its environment E interact only
weakly. Therefore, if S and E are uncorrelated at some reference time t0,

ρ̃SE(t0) = ρ̃S(t0)⊗ ρ̃E(t0) ,

the state of the environment is not changed by the system to lowest order in the
interaction H̃C, i.e., the combined state at a later time t > t0 is given by

ρ̃SE(t) ≈ ρ̃S(t)⊗ ρ̃E(t0) .

This is the so-called Born approximation.
Despite the Born approximation, Equation (2.4) is still hard to solve because its

right-hand side is a convolution involving a time integration over the system state
ρ̃S(t′). To obtain a form that is local in time, we assume that the environmental
modes at the relevant frequencies of the system are dense and that the system couples
roughly equally to all of them. Under these conditions, we can assume that the
bath correlation time is much smaller than the typical timescale of the system’s time
evolution, i.e., perturbations of the environment due to the interaction with the system
decay quickly and do not affect the system at later times. This implies that the
integrand in Equation (2.4) is sharply peaked at t′ ≈ t and tends to zero elsewhere.
Hence, we can approximate ρ̃S(t′) ≈ ρ̃S(t) under the integral and we can safely extend
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the lower limit of integration to −∞,

d

dt
ρ̃SE(t) = − i

~

[
H̃C(t), ρ̃S(t0)⊗ ρ̃E(t0)

]
− 1

~2

∫ t

−∞
dt′
[
H̃C(t),

[
H̃C(t′), ρ̃S(t)⊗ ρ̃E(t0)

]]
. (2.5)

This is the so-called Markov approximation.
Finally, we have obtained a time-local differential equation and we can trace out

the environment to obtain an effective equation of motion for the reduced density
matrix ρ̃S of the system,

d

dt
ρ̃S(t) = − 1

~2

∫ t

−∞
dt′TrE

([
H̃C(t),

[
H̃C(t′), ρ̃S(t)⊗ ρ̃E(t0)

]])
. (2.6)

Without loss of generality, we assume that the condition TrE[H̃C(t)ρ̃S(t0)⊗ρ̃E(t0)] = 0
holds, which can always be ensured by redefining ĤS + ĤE appropriately.

To simplify Equation (2.6) further, we assume the generic situation that the system
S is coupled to an environment E consisting of a set of harmonic oscillator modes,

ĤE =
∑
l

~ωlr̂†l r̂l ,

where we ignored the constant contribution due to the zero-point energy of each mode.
The environment is assumed to be in thermal equilibrium at a temperature T , i.e.,
the initial state of the environment is

ρ̂E(t0) =
∏
l

e−~ωlr̂
†
l r̂l/kBT

1− e−~ωl/kBT
. (2.7)

The coupling is considered to be of the form ĤC = ~
(
ŝ⊗ ê† + ŝ† ⊗ ê

)
, where ê =∑

l κlr̂l is a time-independent Schrödinger operator acting on E and ŝ is a ladder
operator acting on S. The distribution of the frequencies ωl and the coupling strengths
κl are free parameters to model specific environments.

The interaction Hamiltonian can be rewritten in a more general form

ĤC = ~
2∑
j=1

ŝj ⊗ êj , (2.8)

where we set ŝ1 = ŝ, ŝ2 = ŝ†, ê1 = ê†, and ê2 = ê. Since the ŝj are ladder operators
acting on S, they fulfill the commutation relation [ĤS, ŝj ] = δj ŝj . The constant δj is
the energy difference between the final and initial state of the transition, i.e., δ1 = −δ
and δ2 = +δ. Inserting Equation (2.8) into Equation (2.6), we obtain

d

dt
ρ̃S(t) = −

2∑
j,k=1

∫ t

−∞
dt′
( [

s̃j(t)s̃k(t
′)ρ̃S(t)− s̃k(t′)ρ̃S(t)s̃j(t)

] 〈
ẽj(t)ẽk(t

′)
〉

E

+
[
ρ̃S(t)s̃k(t

′)s̃j(t)− s̃j(t)ρ̃S(t)s̃k(t
′)
] 〈
ẽk(t

′)ẽj(t)
〉

E

)
,

where we introduced the notation 〈ẽj(t)ẽk(t′)〉E = TrE[ẽj(t)ẽk(t
′)ρ̃E(t0)] for the cor-

relation functions of the environment. Since the operators êj are time-independent
operators in the Schrödinger picture, the correlation functions are invariant under
time translation and only the time difference τ = t′ − t matters. Going back to the
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Schrödinger picture, we find

d

dt
ρ̂S(t) = − i

~

[
ĤS, ρ̂S(t)

]
−

2∑
j,k=1

(
[ŝj ŝkρ̂S(t)− ŝkρ̂S(t)ŝj ]S

+
êj êk

(−δk)

+ [ρ̂S(t)ŝkŝj − ŝj ρ̂S(t)ŝk]S
−
êk êj

(δk)
)
,

(2.9)

where the properties of the environment are captured by the half-sided Fourier trans-
forms of the environmental correlation functions,

S+
êj êk

(ω) =

∫ 0

−∞
dτ 〈êj(0)êk(τ)〉E e

−iωτ , (2.10a)

S−êj êk(ω) =

∫ ∞
0

dτ 〈êj(0)êk(τ)〉E e
−iωτ . (2.10b)

The superscripts ± reflect the property

S±êj êk(ω) =
1

2
Sêj êk(ω)± iPV

∫ ∞
0

dε

2π

Sêj êk(ε)

ω − ε
,

where PV
∫

denotes the Cauchy principal value of the integral and

Sêj êk(ω) = S+
êj êk

(ω) + S−êj êk(ω) =

∫ ∞
−∞

dτ 〈êj(0)êk(τ)〉E e
−iωτ (2.11)

is the power spectrum of the environment.
For a thermal environment, described by the state (2.7), the correlation function

vanishes for identical operators, 〈êj(0)êj(τ)〉E = 0, j ∈ {1, 2}, and the remaining
terms in the sum of Equation (2.9) can be regrouped as follows:

d

dt
ρ̂S(t) = − i

~

[
ĤS + ∆Ĥ, ρ̂S(t)

]
+ Sê1ê2(−δ)D[ŝ†]ρ̂S(t) + Sê2ê1(δ)D[ŝ]ρ̂S(t) ,

where we introduced the so-called Lindblad dissipator

D[Ô]ρ̂ = Ôρ̂Ô† − 1

2
Ô†Ôρ̂− 1

2
ρ̂Ô†Ô . (2.12)

Following Breuer and Petruccione [2002], we will call the operators Ô Lindblad oper-
ators. The term ∆Ĥ is a correction to the system Hamiltonian ĤS that stems from
the principle-value integrals. It can be absorbed in the Hamiltonian by a suitable
redefinition of the system parameters and we will omit it in the following. In the
Markov approximation, sums over discrete environmental modes ωl can be replaced
by an integral

∫∞
0 dω g(ω)/2π over a continuum of modes weighted with the mode

density g(ω). Likewise, the discrete coupling parameters κl are replaced by a con-
tinuous coupling function κ(ω). The spectral functions evaluated at the transition
frequencies ±δ of the system take the form

Sê1ê2(−δ) = γnth(δ, T ) ,

Sê2ê1(δ) = γ [nth(δ, T ) + 1] ,

where we defined the rate

γ = g(δ) |κ(δ)|2 (2.13)
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and introduced the thermal occupation number

nth(ω, T ) =
e−~ω/kBT

1− e−~ω/kBT
(2.14)

of a mode of energy ω at temperature T .
In summary, in the Born-Markov approximation, an environment of harmonic

oscillators with linear coupling (2.8) is described by Lindblad dissipators of the form
Equation (2.12) that are weighted with rates defined by the environmental spectral
function Sêj êk evaluated at the corresponding transition frequency of the system,

d

dt
ρ̂S(t) = − i

~

[
ĤS, ρ̂S(t)

]
+ γnthD[ŝ†]ρ̂S(t) + γ(nth + 1)D[ŝ]ρ̂S(t) . (2.15)

The Lindblad dissipators preserve the complete positivity ρ̂S(t) ≥ 0 of the density ma-
trix and its normalization Tr[ρ̂S(t)] = 1, but they introduce dissipative effects such as
relaxation or dephasing. More specifically, the Lindblad dissipator D[ŝ†]ρ̂S(t) models
an excitation of the system by absorbing a quantum from the environment, whereas
the Lindblad dissipator D[ŝ]ρ̂S(t) models a relaxation of the system by emitting a
quantum into the environment. This form of the quantum master equation in the
Born-Markov approximation will be our starting point for the description of dissipa-
tive quantum systems. From now on, we will suppress the subscript S, i.e., we will
write ρ̂(t) and Ĥ, respectively.

2.2 Continuously monitored dissipative quantum systems

The QME (2.15) describes the so-called unconditional state of the quantum system
S interacting with its environment E. Excitations are emitted or absorbed by the
system at rates γ(nth +1) and γnth, respectively, but the exact emission or absorption
times are unknown. In contrast, one can imagine a situation where the system S is
completely surrounded by detectors that track every exchange of excitations between
S and E. In this case, the system is found to emit and absorb quanta at random
times and its state evolves stochastically. Now, the instantaneous state of the system
is conditional because it depends on a random sequence of previous detection events.
Each repetition of the experiment corresponds to a random realization of a stochastic
process and is called a quantum trajectory. Importantly, monitoring the interaction
between S and E does not change the average dynamics, i.e., an ensemble average
over many quantum trajectories starting from the same initial state will reproduce
the unconditional evolution given by the QME (2.15). For this reason, Alsing and
Carmichael [1991] called the quantum trajectory approach an unraveling of the QME.

Photon counting and homodyne detection are two experimental methods to im-
plement a continuous measurement that approximates the idealized picture described
above. In Sections 2.2.2 and 2.2.3, we will derive stochastic differential equations that
describe the time evolution of the system under these two measurement schemes. Be-
fore, we introduce the concept of a positive-operator-valued measurement as a model
of the detection process.

2.2.1 Positive-operator-valued measurements

The postulates of quantum mechanics propose the so-called projective measurement as
a theoretical model of the measurement process. Each physically measurable quantity
is associated with a Hermitian observable Â with a set of eigenvalues α. If one
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measures the observable Â with respect to a quantum state |ψ〉, one randomly obtains
one of the eigenvalues α of Â as the measurement result. The probability to obtain
a particular eigenvalue α0 is given by 〈ψ| Π̂α0 |ψ〉, where Π̂α0 denotes the projector
on the subspace spanned by the eigenvectors associated with the eigenvalue α0. The
final state after the measurement is the normalized projection of the state |ψ〉 before
the measurement onto the subspace associated with α0.

However, this model of the quantum measurement process is highly idealized. In
a more realistic model, the quantum system to be measured interacts with another
quantum system serving as a measurement apparatus. The interaction entangles sys-
tem and apparatus until, finally, the state of the measurement apparatus is determined
in a projective measurement. Since system and measurement apparatus are entan-
gled, the projective measurement of the apparatus also affects the system’s state. A
positive-operator-valued measurement (POVM) is an effective description of the im-
pact of this measurement on the system if the degrees of freedom of the measurement
apparatus have been eliminated. The following definition of POVMs is based on the
textbooks by Breuer and Petruccione [2002] and Wiseman and Milburn [2009].

A POVM is defined by

• the set of possible measurement results r,

• a map Or(ρ̂), called operation, that defines the effective change of the system’s
state ρ̂ if the measurement result r is obtained, and

• an operator Êr, called effect, that defines the probability P (r) = Tr[Êrρ̂] to
obtain the corresponding measurement result.

It can be shown that the effects must have the general form

Êr =
∑
k

Ô†r,kÔr,k , (2.16)

where the linear operators Ôr,k are called measurement operators. To ensure that P (r)

is a probability, the effects must be positive semidefinite, Êr ≥ 0, and sum up to the
identity, ∑

r

Êr = 1̂ . (2.17)

If a certain measurement result r is obtained, the normalized state of the system after
the measurement is given by

ρ̂′|r =
Or(ρ̂)

P (r)
.

The operation Or must be

1. completely positive, i.e., it maps positive operators onto positive operators even
if Or is part of a combined operation Or ⊗ 1 acting on a tensor product of
Hilbert spaces H⊗H′,

2. trace-preserving or decreasing, i.e., 0 ≤ Tr[Or(ρ̂)] ≤ 1, and

3. convex linear, i.e., the relation Or
(∑

j pj ρ̂j

)
=
∑

j pjOr(ρ̂j) holds for proba-
bilities 0 ≤ pj ≤ 1 with

∑
j pj = 1.
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û1

S

E

û2
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û2
ûn
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Figure 2.1: Sketch of a dissipative quantum system S whose interac-
tion with the environment E via the mode ô is continuously monitored.
(a) In the case of photon counting, the photons emitted in the mode
ô are directly detected. (b) In the case of homodyne detection, the
mode ô is displaced by a local oscillator (LO) signal at a beam splitter
before detection. The sketch shows the so-called imbalanced homodyne
detection scheme.

It can be shown that the only form that satisfies all of these conditions is

Or(ρ̂) =
∑
k

Ôr,kρ̂Ô
†
r,k . (2.18)

The POVM obviously reduces to the conventional projective measurement of an ob-
servable Â if we choose the set of results r to be the set of eigenvalues α of Â and if we
identify the measurement operators Ôr,k with the projectors onto the corresponding
eigenspaces Π̂α. However, the results r in a POVM do not have to be related to the
eigenvalues of an observable. Instead, they can label completely different abstract
measurement outcomes, and there could be even only two distinct outcomes.

2.2.2 Photon counting

Stochastic quantum master equation

Following the treatment in Wiseman and Milburn [2009] and Breuer and Petruccione
[2002], we now derive a stochastic master equation (SME) for photon counting. As
discussed at the beginning of this chapter, this SME defines a stochastic process that
is fully equivalent to its corresponding QME (2.15) if an ensemble average over many
realizations of the stochastic process is taken.

As a starting point of the derivation, we consider a quantum master equation of
the form (2.15),

d

dt
ρ̂ = − i

~

[
Ĥ, ρ̂

]
+

Nu∑
j=1

D[ûj ]ρ̂+D[ô]ρ̂ , (2.19)

withNu+1 Lindblad terms. The Lindblad operators ûj are associated with unobserved
interactions between system and environment, whereas the emission of quanta via
the transition associated with the Lindblad operator ô is continuously monitored, as
shown in Figure 2.1(a). For simplicity, we absorbed the decay rates and the thermal
prefactors into the Lindblad operators. Equation (2.15) is recovered by setting Nu =
1 and by defining û1 =

√
γnthŝ

† and ô =
√
γ(nth + 1)ŝ. To be prepared for the

derivation of homodyne detection in Section 2.2.3, we assume that the output mode
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ô is displaced by a complex amplitude ξ before detection,

ô→ ô→ = ô+ ξ . (2.20)

The case of a pure photon counting measurement is recovered in the limit ξ → 0.
The displacment transformation (2.20) can be achieved by the setup shown in Fig-
ure 2.1(b), where the output mode ô of the system is mixed with a second mode ôLO

at a beam splitter of transmittivity p [Wiseman and Milburn, 1993],

ô→ =
√
pô+ i

√
1− pôLO ,

ô↑ = −i
√

1− pô−√pôLO .

The quantity ξ depends on the local oscillator (LO) field ôLO that is generated by a
laser at the frequency of the output mode ô. It can be decomposed into a classical
coherent field and quantum fluctuations, ôLO = −iξ/

√
1− p + ν̂. We now consider

the limit p → 1 of a high-transmittivity beam splitter and a strong laser. Then, the
two output modes of the beam splitter are given by ô→ = ô+ ξ and ô↑ = −ôLO.

Using the relation

D[ô+ ξ]ρ̂ = D[ô]ρ̂− i
[
i

2
(ξ∗ô− ξô†), ρ̂

]
,

we can rewrite the Lindblad dissipator D[ô]ρ̂ in Equation (2.19) to incorporate the
displacement ξ of the mode ô. The modified QME is

d

dt
ρ̂ = − i

~

[
Ĥ − i~

2
(ξ∗ô− ξô†), ρ̂

]
+
∑
j

D[ûj ]ρ̂+D[ô+ ξ]ρ̂ . (2.21)

Next, we derive an equation for the infinitesimal change dρ̂ of the system’s state
ρ̂ in a time interval dt. The continuous measurement of the displaced mode ô→,
given by Equation (2.20), can be described by a POVM with two results, namely,
the detection of a photon in the time interval dt, or no detection event in dt. The
corresponding measurement operators are Ô1 = ô→

√
dt if a photon has been detected,

and Ô0 = 1̂− ô†→ô→dt/2 otherwise. The form of Ô0 follows from the form of Ô1 and
the fact that the condition (2.17) must be satisfied in each time step up to corrections
of order dt2. Using Equation (2.18), the change of the state ρ̂ in a time step dt due
to the continuous measurement is

dρ̂|meas =

 Ô0ρ̂Ô
†
0

Tr
[
Ô†0Ô0ρ̂

] − ρ̂
 (1− dN) +

 Ô1ρ̂Ô
†
1

Tr
[
Ô†1Ô1ρ̂

] − ρ̂
 dN . (2.22)

Here, dN is a random number that is unity if a photon has been emitted, and zero
otherwise, i.e.,

dN2 = dN . (2.23)

According to the theory of POVMs, the probability to observe an emission event in
the time step dt is given by P (1) = Tr[Ô†1Ô1ρ̂] = Tr[ô†→ô→ρ̂]dt. Since the emission
of photons is a discrete process, dN is distributed according to a Poisson distribution
with expectation value

E[dN ] = Tr[ô†→ô→ρ̂]dt . (2.24)
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Inserting the explicit forms of Ô0 and Ô1 in Equation (2.22) and expanding to leading
order in dt and dN , we find

dρ̂|meas =

[
−1

2
ô†→ô→dt+

1

2
Tr(ô†→ô→ρ̂)dt

]
ρ̂+ ρ̂

[
−1

2
ô†→ô→dt+

1

2
Tr(ô†→ô→ρ̂)dt

]
+

[
ô→ρ̂ô

†
→

Tr(ô†→ô→ρ̂)
− ρ̂

]
dN .

On the other hand, the Hamiltonian term and the unmonitored dissipative interactions
in Equation (2.21) change the state ρ̂ in the time interval dt by

dρ̂|rest = − i
~

[
Ĥ − i~

2
(ξ∗ô− ξô†), ρ̂

]
dt+

∑
j

D[ûj ]ρ̂dt .

Combining these results, we obtain the following SME:

dρ̂ = [(L+N )ρ̂− Tr (N ρ̂) ρ̂] dt+

[
(ô+ ξ)ρ̂(ô† + ξ∗)

Tr[(ô† + ξ∗)(ô+ ξ)ρ̂]
− ρ̂
]

dN , (2.25)

where the superoperators L and N are defined as follows:

Lρ̂ = − i
~

[
Ĥ − i~

2
(ξ∗ô− ξô†), ρ̂

]
+
∑
j

D[ûj ]ρ̂ , (2.26)

N ρ̂ = −
{

1

2
(ô† + ξ∗)(ô+ ξ), ρ̂

}
. (2.27)

This stochastic differential equation describes two distinct contributions to the time
evolution of the density matrix ρ̂. The term proportional to the infinitesimal time
step dt describes a continuous time evolution of the state ρ̂ if no photon has been
detected. The term proportional to the stochastic increment dN describes a so-called
quantum jump event, i.e., a sudden discontinuous change of the density matrix if a
photon has been detected. The stochastic process defined by Equation (2.25) is a
piecewise-deterministic process because ρ̂ undergoes a continuous time evolution that
is occasionally interrupted by discontinuous quantum jump events.

The term N ρ̂ stems from the fact that even the observation of no photon in the
time interval dt contains information on the state ρ̂ [Carmichael, 2008]: If no photons
have been detected for several successive time steps, ρ̂ describes most likely a state
with a low photon number. The term N ρ̂ in Equation (2.25) modifies the state
ρ̂ accordingly. If we generalize the definition of the commutator to non-Hermitian
arguments,

[Ĥ, ρ̂] = Ĥρ̂− ρ̂Ĥ† ,

the term N ρ̂ can be rewritten as a non-Hermitian correction −i~M̂ to the system
Hamiltonian Ĥ, where

M̂ =
~
2

(ô† + ξ∗)(ô+ ξ) . (2.28)

Such a non-Hermitian term does not preserve the trace of the density matrix. However,
Equation (2.25) is still trace preserving because of the nonlinear term −Tr(N ρ̂)ρ̂.
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Using the fact that Equation (2.24) can be rewritten as

E[dN ] = −Tr(N ρ̂)dt , (2.29)

one can check that the ensemble average E[dρ̂]/dt of Equation (2.25) reproduces the
unconditional QMEs (2.19) and (2.21). In this sense, the stochastic process defined
in Equation (2.25) is equivalent to the corresponding QME [Carmichael, 2008].

Stochastic Schrödinger equation

If there are no unobserved dissipative channels, i.e., ûj = 0 for all j in Equation (2.19),
the SME (2.25) will preserve the purity of a pure initial state ρ̂(t0) = |ψ(t0)〉 〈ψ(t0)|.
Under these conditions, we can replace the SME by a stochastic Schrödinger equation
(SSE) for a state vector |ψ〉,

d |ψ〉 =

[
− i
~

(
Ĥ − i~

2
(ξ∗ô− ξô†)− i~M̂

)
+ 〈ψ| M̂ |ψ〉

]
|ψ〉 dt

+

[
(ô+ ξ) |ψ〉√

〈ψ| (ô† + ξ∗)(ô+ ξ) |ψ〉
− |ψ〉

]
dN , (2.30)

where M̂ has been defined in Equation (2.28). The stochastic increment dN is again
a Poissonian increment fulfilling the relations dN2 = dN and

E[dN ] = 〈ψ|
(
M̂ + M̂ †

)
|ψ〉 dt .

Using the relation

dρ̂ = (d |ψ〉) 〈ψ|+ |ψ〉 (d 〈ψ|) + (d |ψ〉)(d 〈ψ|) , (2.31)

one can show that Equation (2.30) reproduces the SME (2.25) for ûj = 0 to leading
order in dt and dN . Note that the third term on the right-hand side of Equation (2.31)
is actually relevant because of the relation dN2 = dN .

2.2.3 Unbalanced homodyne detection

The SME and SSE obtained for photon counting describe a piecewise-deterministic
stochastic processes, i.e., the quantum state of the system evolves continuously be-
tween successive photon detection events but changes discontinuously if a photon is
detected. This raises the question whether it is possible to find an unraveling of the
QME (2.15) that corresponds to a continuous stochastic process, e.g., a Wiener pro-
cess. The free parameter ξ in the equations of motion hints that the answer will be
affirmative since the unraveling of a QME is obviously not uniquely defined. In the
following, we will show that the quantum trajectories become continuous for a large
LO amplitude ξ. The corresponding experimental measurement is called homodyne
detection.

In a first step, we derive the stochastic differential equations for unbalanced ho-
modyne detection. The case of balanced homodyne detection will be discussed in
Section 2.2.4.
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Stochastic quantum master equation

To derive the stochastic differential equation for homodyne detection, we go back to
Equation (2.25) and consider the case when the LO amplitude ξ is much larger than
all energy scales of the system Hamiltonian Ĥ and all dissipative decay rates contained
in ûj . In this limit, the LO signal will dominate the detected signal, |ξ|2 �

〈
ô†ô
〉
, and

photons will be detected in each time step. The system is still only weakly perturbed
by the measurement since most of the photons stem from the LO.

Following the discussion of Wiseman and Milburn [2009], we now derive the SME
corresponding to the limit |ξ|2 �

〈
ô†ô
〉
by focusing on a time interval δt = O(|ξ|−3/2).

According to Equation (2.29), the average number of detected photons in the interval
[t, t+ δt) is given by

E(δN) =
[
|ξ|2 + Tr

[
(ξ∗ô+ ξô†)ρ̂(t)

]
+O(|ξ|1/2)

]
δt , (2.32)

where the last term stems from the change δρ̂ of the density matrix during the time
interval δt. In the limit |ξ| → ∞, the number of detected photons grows proportional
to |ξ|2 δt = O(|ξ|1/2), whereas the change of the system’s state δρ̂ is of the order
of O(δt) = O(|ξ|−3/2) and tends to zero. This fact ensures that we can derive a
differential equation for ρ̂ by considering the time interval δt. Fluctuations in the
number of detected photons δN are dominated by the Poissonian photon-number
statistics of the local oscillator. Since the local-oscillator amplitude is very large,
the Poissonian distribution can be approximated by a Gaussian distribution of mean
E(δN) and variance σ2 = [|ξ|2+O(|ξ|3/2)]δt [Wiseman and Milburn, 1993]. Therefore,
we can approximate the stochastic evolution of δN by a continuous Wiener process
[Breuer and Petruccione, 2002]

δN = |ξ|2 δt

[
1 +

〈
ξ∗ô+ ξô†

〉
(t)

|ξ|2

]
+ |ξ| δW +O(|ξ|−1/2) , (2.33)

where the Wiener increment δW satisfies E(δW ) = 0 and δW 2 = δt and is distributed
according to a normal distribution of unit variance. In the limit |ξ| → ∞, the detected
photocurrent is given by

E(δN)

δt
= |ξ|2 + |ξ|

〈
eiϕô+ e−iϕô†

〉
(t) , (2.34)

where we have decomposed the LO amplitude in polar coordinates,

ξ = |ξ| e−iϕ . (2.35)

Therefore, the detected photocurrent measures a field quadrature
〈
eiϕô+ e−iϕô†

〉
of

the mode ô depending on the relative phase ϕ of the LO. Inserting Equation (2.33)
in Equation (2.25) and taking the limit |ξ| → ∞, we obtain the SME for homodyne
detection,

dρ̂ =− i

~

[
Ĥ, ρ̂

]
dt+

∑
j

D[ûj ]ρ̂dt+D[ô]ρ̂dt

+
[
eiϕôρ̂+ e−iϕρ̂ô† −

〈
eiϕô+ e−iϕô†

〉
ρ̂
]

dW , (2.36)
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where we used the limits δt→ dt and δW → dW for |ξ| → ∞. The stochastic Wiener
increment has the properties

dW 2 = dt and E(dW ) = 0 , (2.37)

and is distributed according to a normal distribution with unit variance. Using these
properties, one can check that the ensemble average E(dρ̂)/dt reproduces the uncon-
ditional QME (2.19).

Stochastic Schrödinger equation

Similar to the case of photon counting, it is possible to rewrite the homodyne-detection
SME (2.36) as a SSE for a state vector |ψ〉 if there are no unobserved dissipative
channels, i.e., if ûj = 0 for all j. The corresponding SSE is [Wiseman and Milburn,
2009]

d |ψ〉 =

[
−iĤ − 1

2

(
ô†ô−

〈
eiϕô+ e−iϕô†

〉
ôeiϕ +

1

4

〈
eiϕô+ e−iϕô†

〉2
)]
|ψ〉 dt

+

[
ôeiϕ − 1

2

〈
eiϕô+ e−iϕô†

〉]
|ψ〉 dW . (2.38)

Using dρ̂ = (d |ψ〉) 〈ψ|+ |ψ〉 (d 〈ψ|)+(d |ψ〉)(d 〈ψ|) and dW 2 = dt, one can verify that
Equation (2.38) reproduces the SME (2.36) for ûj = 0 to leading order in dt.

2.2.4 Balanced homodyne detection

Stochastic quantum master equation

Instead of mixing the LO signal with the output mode ô at a beam splitter with a
transmittivity close to unity, one can also use a beam splitter with transmittivity 1/2.
Then, the output modes are given by [Wiseman and Milburn, 1993]

ô→ =
1√
2
ô+

i√
2
ôLO ,

ô↑ =
i√
2
ô+

1√
2
ôLO .

Thus, for an incoming local-oscillator signal ôLO = iξ + ν̂, both outgoing modes will
contain information on the system,

ô→ =
1√
2

(ô− ξ) +
i√
2
ν̂ ,

ô↑ =
i√
2

(ô+ ξ) +
1√
2
ν̂ ,

and, consequently, a photon detector must be placed at each outgoing arm. Using the
relation

D[ô]ρ̂ = D
[

1√
2

(ô− ξ)
]
ρ̂+D

[
1√
2

(ô+ ξ)

]
ρ̂ ,
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one can rewrite Equation (2.19) as follows:

d

dt
ρ̂ = − i

~

[
Ĥ, ρ̂

]
+
∑
j

D[ûj ]ρ̂+D
[

1√
2

(ô− ξ)
]
ρ̂+D

[
1√
2

(ô+ ξ)

]
ρ̂ .

Repeating the calculation outlined in Section 2.2.2, one obtains the SME

dρ̂ = [(L+N )ρ̂− Tr(N ρ̂)ρ̂]dt+

[
(ô+ ξ)ρ̂(ô† + ξ∗)

Tr[(ô† + ξ∗)(ô+ ξ)ρ̂]
− ρ̂
]

dNô+ξ

+

[
(ô− ξ)ρ̂(ô† − ξ∗)

Tr[(ô† − ξ∗)(ô− ξ)ρ̂]
− ρ̂
]

dNô−ξ (2.39)

where the superoperators L and N are defined as follows:

Lρ̂ = − i
~

[
Ĥ, ρ̂

]
+
∑
j

D[ûj ]ρ̂ , (2.40)

N ρ̂ = −
{

1

2

(
ô†ô+ |ξ|2

)
, ρ̂

}
. (2.41)

The increments dNô±ξ ∈ {0, 1} describe two independent stochastic Poisson processes
and have the ensemble-averaged expectation values

E[dNô±ξ] =
1

2
Tr
[
(ô† ± ξ∗)(ô± ξ)ρ̂

]
dt .

The homodyne signal is constructed by subtracting the signals of the two detectors,
i.e., the average detected photocurrent is

E[dNô+ξ]− E[dNô−ξ]

dt
= Tr

[
(ξ∗ô+ ξô†)ρ̂

]
.

Comparing this result to Equation (2.34), we find that the large constant offset |ξ|2 has
been canceled out. This is beneficial for an experimental implementation of homodyne
detection, because the |ξ|2-term is an unwanted large background that may even
fluctuate with the laser amplitude |ξ|. Note that while this background has been
removed, the relevant information on the field quadrature of the quantum state ρ̂ is
identical both in the unbalanced and in the balanced homodyne detection scheme.

In the limit |ξ| → ∞, the Poissonian processes dNô±ξ can again be approximated
by two continuous Wiener processes. The results of the calculation given in Sec-
tion 2.2.3 can be taken over with the replacements ξ → ±ξ/

√
2 and ô → ô/

√
2. In

this way, one obtains the SME

dρ̂ = − i
~

[
Ĥ, ρ̂

]
dt+

∑
j

D[ûj ]ρ̂dt+D[ô]ρ̂dt

+
[
eiϕôρ̂+ e−iϕρ̂ô† −

〈
eiϕô+ e−iϕô†

〉
ρ̂
] dWô+ξ − dWô−ξ√

2
,

where the independent Wiener increments fulfill (dWô±ξ)
2 = dt, dWô±ξdWô∓ξ = 0,

and E[dWô±ξ] = 0. This result is identical to the SME (2.36) for unbalanced homo-
dyne detection if one defines a new Wiener increment dW = (dWô+ξ − dWô−ξ)/

√
2

which has the properties required in Section 2.2.3, i.e., it satisfies the conditions
E[dW ] = 0 and dW 2 = dt, and it is distributed according to a normal distribution
with unit variance.
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Stochastic Schrödinger equation

Consequently, the stochastic Schrödinger equation for balanced homodyne detection
is given by Equation (2.38).

2.2.5 Stochastic master equation vs. stochastic Schrödinger equa-
tion

In the previous sections, we derived SSEs and SMEs for photon counting and homo-
dyne detection. We argued that the SSE only applies to situations when there are no
unobserved interactions with the environment. Otherwise, the SME approach must
be taken. However, from the point of view of a theoretical physicist, one can always
assume that all interactions with the environment were monitored. This trick is actu-
ally used in the so-called quantum Monte Carlo wave function method [Dalibard et al.,
1992; Dum et al., 1992], which is a numerical approach to calculate the time evolution
and correlation functions of dissipative quantum systems in a less memory-consuming
way than by solving a QME of the form of Equation (2.15). To apply the quantum
Monte Carlo wave function method, one rewrites a QME as a multidimensional SSE
consisting of several independent stochastic Poisson processes by assuming that all
dissipative processes in the QME were perfectly monitored. A potentially mixed ini-
tial state ρ̂(t0) is decomposed into a statistical mixture of pure states |ψj(t0)〉 and the
time evolution of each of these pure states is calculated by averaging many quantum
trajectories obtained from the SSE. In this way, only a N -dimensional state vector
must be stored instead of a N ×N -dimensional matrix, i.e., the requirements on the
computer’s memory have been reduced. This comes at the cost that one has to cal-
culate a large number of quantum trajectories to recover the dynamics of ρ̂(t) by an
ensemble average.

With this in mind, it may seem unreasonable to construct a SME that describes
some dissipative effects by Lindblad dissipators and others by a stochastic process.
However, the SME and a quantum Monte Carlo wave function approach differ in
the interpretation of the propagated states ρ̂ and |ψ〉. The SME calculates a strict
quantum trajectory in the sense of Wiseman and Milburn [1993], i.e., each stochastic
quantum jump event corresponds to an experimentally accessible detection event.
Thus, the state ρ̂ describes the quantum state of a dissipative quantum system in
an experiment that has measured the corresponding series of detection events. In
contrast, the quantum Monte Carlo wave function approach calculates a lax trajectory
in the sense of Wiseman and Milburn [1993] because there are additional auxiliary
stochastic processes that have no physical correspondence in an experimental setup
but are merely added to convert the QME into a SSE. Therefore, the state |ψ〉 does not
describe the quantum state of an actual experiment. Note, however, that a physical
state could always be recovered by an ensemble average over all auxiliary dimensions
of the stochastic process.

2.2.6 Conditional vs. unconditional dynamics

The detection record of a continuous measurement provides a label for quantum states
that allows one to extract more information from a quantum system than in the
corresponding unconditional experiment. As an example, Breuer and Petruccione
[2002] consider a quantum system that is initialized in a certain state ρ̂(t0) and whose
dynamics is governed by an unconditional QME. At a certain time t1, the variance of
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an observable Â with respect to the unconditional state ρ̂(t1) is measured,

〈(∆Â)2〉ρ̂(t1) = Tr[Â2ρ̂(t1)]−
(

Tr[Âρ̂(t1)]
)2

. (2.42)

If a continuous measurement is performed such that the dynamics is decribed by a
SSE for the state vector |ψ〉, the unconditional density matrix of the system at time
t1 can be decomposed into a set of pure states |ψj〉,

ρ̂(t1) =
∑
j

pj |ψj〉 〈ψj | ,

where each index j represents a certain photodetection record, |ψj〉 is the system state
given this photodetection record, and pj is the probability of observing the record
j. By discarding all but one specific photodetection record j0, one can repeatedly
prepare the corresponding state |ψj0〉. Therefore, one can measure the variance of the
observable Â with respect to the state |ψj0〉,

〈(∆Â)2〉|ψj0〉 = 〈ψj0 | Â2 |ψj0〉 − 〈ψj0 | Â |ψj0〉
2 . (2.43)

The variance (2.42) can now be decomposed into a sum of two variances,

〈(∆Â)2〉ρ̂(t1) =
∑
j

pj〈(∆Â)2〉|ψj〉 +

∑
j

pj 〈ψj | Â |ψj〉2 −
(∑

j

pj 〈ψj | Â |ψj〉
)2

 ,

where the first term is the pure-state variance (2.43) ensemble-averaged over all pos-
sible records j, and the second term measures the classical statistical fluctuations of
the expectation value 〈ψj | Â |ψj〉 over all possible records j. Both terms represent
information that is inaccessible given only the unconditional state ρ̂(t1).

2.3 Phase-space quasiprobability distributions

The concept of phase space is a convenient tool in classical physics to illustrate the
state and the dynamics of a classical system [Nayfeh and Mook, 1995]. Wigner [1932]
proposed a generalization of this concept to quantum systems by defining the Wigner
function of a quantum state, which has the form of a joint probability density function
of position and momentum. However, despite the fact that its marginal distributions
are indeed proper probability distributions of position and momentum, the Wigner
function itself may take negative values, therefore, it is only a quasiprobability distri-
bution.

2.3.1 Harmonic oscillator

We now define continuous-variable phase-space quasiprobability distributions for a
system that is defined on the infinite-dimensional Hilbert space of a harmonic oscilla-
tor. An overview of the definitions and conventions regarding the quantum harmonic
oscillator is given in Appendix A. In addition to the Wigner function, a whole family
of quasiprobability distributions exists, which can be defined by the s-parametrized
characteristic function [Gerry and Knight, 2005]

Cρ̂(λ, s) = Tr
[
ρ̂eλâ

†−λ∗â+s|λ|2/2
]
. (2.44)
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For s = 0, the characteristic function reduces to the expectation value of the displace-
ment operator D̂(λ), defined by

D̂(λ) = eλâ
†−λ∗â . (2.45)

The Glauber-Sudarshan P-function, the Wigner function W, and the Husimi Q-
function are defined via a Fourier transform of the characteristic function (2.44) for
different values of the parameter λ,

Pρ̂(α) =
1

π2

∫
d2λCρ̂(λ, 1)eλ

∗α−λα∗ , (2.46)

Wρ̂(α) =
1

π2

∫
d2λCρ̂(λ, 0)eλ

∗α−λα∗ , (2.47)

Qρ̂(α) =
1

π2

∫
d2λCρ̂(λ,−1)eλ

∗α−λα∗ , (2.48)

where the integration range is the entire complex plane and d2z = d[Re(z)]d[Im(z)]
[Bishop and Vourdas, 1994]. The variable α = 〈α| â |α〉 denotes the complex amplitude
of a coherent state, cf. Appendix A. The P, W, and Q function allow one to evaluate
normal-ordered, symmetric, and antinormal-ordered operator averages, respectively,
by integrating a corresponding polynomial in α and α∗ over the entire complex plane.
For instance, we have

Tr[â†pâqρ̂] =

∫
d2α Pρ̂(α)α∗pαq .

The three quasiprobability distributions can be mapped onto each other by folding
them with Gaussian distributions [Carmichael, 2008],

Qρ̂(α) =
2

π

∫
d2λ e−2|λ−α|2Wρ̂(λ) =

1

π

∫
d2λ e−|λ−α|

2

Pρ̂(λ) ,

Wρ̂(α) =
2

π

∫
d2λ e−2|λ−α|2Pρ̂(λ) .

Using the parity operator [Bishop and Vourdas, 1994]

Π̂ = eiπâ
†â =

1

2π

∫
d2ξ D̂(ξ) (2.49)

and the property D̂(α)D̂(β) = eiIm(αβ∗)D̂(α+β) of the displacement operator, one can
rewrite the Wigner function as the expectation value of a displaced parity operator,

Wρ̂(α) =
2

π
Tr
[
ρ̂D̂(α)Π̂D̂†(α)

]
. (2.50)

Similarly, the Husimi function can be rewritten as the expectation value of the corre-
sponding quantum state ρ̂ with respect to coherent states [Gerry and Knight, 2005],

Qρ̂(α) =
1

π
〈α| ρ̂ |α〉 . (2.51)

The P, W, and Q functions are called quasiprobability distributions because they
violate the requirements that probability distributions should be positive and not more
singular than a Dirac delta distribution. For certain quantum states ρ̂, the P function
can take negative values or it can even become a highly singular distribution [Mandel,
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1986]. The Wigner function W is always a proper function, but it can have negative
values. Finally, Equation (2.51) shows that the Husimi Qρ̂ function is always positive
for a positive semidefinite density matrix ρ̂. However, the converse is not true, i.e., not
every positive Q function actually corresponds to a positive semidefinite Hermitian
state ρ̂ [Gardiner, 1995].

The properties of the Wigner function turn it into a good witness for nonclassi-
cality: If the Wigner function Wρ̂(α) has negative values, the corresponding state ρ̂ is
nonclassical [Gerry and Knight, 2005; Zurek, 2003]. For instance, it has been shown
that negativity in the Wigner function of quantum states or quantum operations is
a necessary condition to ensure that a quantum algorithm cannot efficiently be sim-
ulated by classical means [Mari and Eisert, 2012; Veitch et al., 2013; Stahlke, 2014].
We will use this definition of nonclassicality in Chapter 4.

2.3.2 Spin

To visualize the quantum state of spin systems, we need to generalize the notion
of phase-space quasiprobability distributions to finite-dimensional systems. In con-
trast to the case of an infinite-dimensional system, there are two alternative ways to
accomplish this task.

The first option is to consider the spin eigenstates as discrete positions and to in-
troduce the corresponding momenta by discrete Fourier transform [Buot, 1974; Woot-
ters, 1987; Galetti and de Toledo Piza, 1988]. This gives rise to discrete phase-space
quasiprobability distributions that are defined on a set of points on a torus. Analo-
gously to the case of an infinite-dimensional system, integrating the Wigner function
along a certain direction in phase space must yield a proper probability distribution,
which is the marginal distribution along the perpendicular direction [Opatrný et al.,
1995; Gibbons et al., 2004]. Similar discrete quasiprobability distributions arise if
one defines joint probability distributions that describe simultaneous measurements
of different spin components [Feynman, 2005; Cohen and Scully, 1986].

The second option is to define coherent states for finite-dimensional system, so-
called spin-coherent states [Radcliffe, 1971; Arecchi et al., 1972], see Appendix A.2.
This gives rise to continuous phase-space quasiprobability distributions that are de-
fined on a sphere [Agarwal, 1981; Brif and Mann, 1999]. We will choose this approach
because it gives rise to continuous values of the amplitude and phase degree of freedom.
Moreover, amplitude and phase can easily be identified by comparing spin-coherent
states to the coherent states of an infinite-dimensional system.

We now generalize the Husimi Q function (2.51) to spin systems. As derived
in Appendix A.2, a spin-coherent state |θ, ϕ〉 is given by the extremal spin state
|S,mS = +S〉 which has been rotated by the Euler angles (α, β, γ) = (ϕ, θ, 0) [Rad-
cliffe, 1971; Brink and Satchler, 1968],

|θ, ϕ〉 = e−iϕŜze−iθŜy |S, S〉 . (2.52)

With this result in hand, we now define the Husimi Q function for spins as

Qρ̂(θ, ϕ) =
2S + 1

4π
〈θ, ϕ| ρ̂ |θ, ϕ〉 . (2.53)

As shown in Appendix A.2, the spin-coherent state |θ, ϕ〉 converges to the coherent
state |α〉 with α =

√
2S tan(θ/2)eiϕ in the limit S � 1 up to an irrelevant global

phase factor. This result shows that the angles θ ∈ [0, π) and ϕ ∈ [0, 2π) parametrize
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Ωmech

Γmech

κ

ωlaser, αlaser

ωcav

X

L

Figure 2.2: Sketch of an optomechanical system. A cavity is formed
between a fixed mirror (right) and a movable mirror (left) that is
mounted to a spring. The mechanical resonance frequency is denoted
by Ωmech. A displacement X of the movable mirror will change the
cavity length L and, thus, the optical resonance frequency ωcav. The
cavity can be driven by a laser at frequency ωlaser, which has a complex
amplitude αlaser. Both the cavity and the mechanics are subject to
losses at the rates κ and Γmech, respectively.

the amplitude and phase of a spin-coherent state, respectively. We will use the Q
function for spin systems in Chapters 5 and 6.

2.4 Optomechanical system

2.4.1 Optomechanical Hamiltonian

In the 17th century, the German astronomer Johannes Kepler noted that dust tails
of comets always point away from the sun. He attributed this effect to radiation-
pressure forces, which are due to the fact that photons carry momentum.1 While
radiation-pressure forces are usually negligible in our macroscopic world, they lead to
an appreciable coupling between mechanical and optical degrees of freedom in setups
at the micro- and nanoscale.

The optomechanical Hamiltonian is a generic model of the interaction between
electromagnetic radiation and mechanical motion in the quantum regime, and it has
become the key element to model a large number of different experiments in the
field of cavity optomechanics [Aspelmeyer et al., 2014]. In its simplest form, the
optomechanical Hamiltonian describes the interaction between a mechanical mode b̂
at frequency Ωmech and a single mode â of the radiation field in a cavity at frequency
ωcav. The mechanical mode could be, for instance, a spring to which one of the end
mirrors of the cavity is mounted, as shown in Figure 2.2. A displacement X of the
cantilever changes the length L of the cavity and, thus, the resonance frequency ωcav.
To lowest order in the displacement, this gives rise to a parametric coupling between
the cavity and the mechanical oscillator,

ωcav(L+X) ≈ ωcav +X
dωcav

dX
+O(X2) . (2.54)

Quantizing the radiation field and the mechanical motion, one obtains the following
interaction Hamiltonian between the optical and the mechanical mode [Law, 1995].

Ĥint = −~g0â
†â
(
b̂+ b̂†

)
, (2.55)

1In fact, both the radiation pressure and the solar wind exert forces on the particles emitted by
the comet. Radiation pressure generates a comparatively small acceleration of solid dust particles
whereas the larger acceleration of ionized particles is caused by the solar wind [Weigert et al., 2005].
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where g0 = Gxzpf denotes the bare optomechanical coupling strength. The frequency
pull parameter G = −dωcav/dX describes the frequency change per elongation. In
our cantilever model, it has the form G = ωcav/L [Aspelmeyer et al., 2014]. The
minus sign appears in the interaction Hamiltonian because an increase of the cavity
length decreases the resonance frequency. Following the conventions introduced in
Appendix A, the mechanical zero-point fluctuation is given by xzpf =

√
~/2mΩmech,

where m denotes the effective mechanical mass. The mechanical elongation expressed
in terms of the creation and annihilation operator b̂† and b̂, respectively, is X̂ =
xzpf(b̂

† + b̂).
Typically, the optical cavity is driven by a laser of strength αlaser at a frequency

ωlaser. The total Hamiltonian of the setup in a frame rotating at the laser frequency,
|ψlab〉 = Û |ψrot〉 where Û(t) = e−iωlaserâ

†ât, is

ĤOM = −~∆â†â+ ~Ωmechb̂
†b̂− ~g0â

†â
(
b̂† + b̂

)
+ ~αlaser

(
â† + â

)
. (2.56)

The detuning is defined as

∆ = ωlaser − ωcav . (2.57)

One can account for mechanical and radiative losses by embedding the optomechanical
Hamiltonian (2.56) in a QME of the form (2.15),

d

dt
ρ̂ = − i

~

[
ĤOM, ρ̂

]
+ Γmech (nph + 1)D[b̂]ρ̂+ ΓmechnphD[b̂†]ρ̂+ κD[â]ρ̂ , (2.58)

where κ is the optical damping rate, Γmech is the mechanical damping rate, and nph

is the thermal occupation number of the mechanical mode. Since typical mechani-
cal frequencies are orders of magnitude smaller than the cavity frequency, one can
assume that the photons are effectively coupled to a zero-temperature environment
[Aspelmeyer et al., 2014].

Optomechanical figures of merit

An important figure of merit of the optomechanical system defined by Equations (2.56)
and (2.58) is the ratio between the bare optomechanical coupling strength and the
mechanical frequency,

g0

Ωmech
.

Typically, optomechanical systems operate in the weak-coupling regime g0 � Ωmech.
This allows one to perform a semiclassical analysis of the optomechanical equations
of motion, as discussed below in Section 2.4.2. Moreover, the optomechanical Hamil-
tonian can be linearized in the weak-coupling regime by reparametrizing the optical
field as the sum of a coherent state |α〉 and small quantum fluctuations δâ

â = α+ δâ ,

where the condition |〈δâ〉| � |α| holds. To leading order in |α| / |〈δâ〉| and for g0 �
Ωmech, Equation (2.56), is approximated by the following linearized Hamiltonian:

Ĥlin = −~∆δâ†δâ+ ~Ωmechb̂
†b̂− ~g

(
e−iφδâ† + eiφδâ

)(
b̂† + b̂

)
, (2.59)
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where we decomposed the amplitude of the coherent state in polar coordinates, α =
|α| e−iφ, and introduced the optomechanical coupling strength

g = g0 |α| . (2.60)

Note that driving the optical cavity with a laser enhances the bare optomechanical
coupling strength g0 by the square root of the intracavity photon number |α|2. The
QME in the linearized description is obtained by replacing ĤOM → Ĥlin and â→ δâ
in Equation (2.58). It provides a convenient description of many effects, for instance
displacement sensing [Teufel et al., 2009], coherent state transfer [Verhagen et al.,
2012], and optomechanical cooling [Wilson-Rae et al., 2007; Marquardt et al., 2007].

Another important quantity is the so-called sideband ratio

κ

Ωmech
.

In the resolved-sideband regime κ < Ωmech, the optical resonance at ωcav is sufficiently
narrow to be able to detect mechanical sidebands at the frequencies ωcav±Ωmech. As
we will discuss below, the steady state of the QME (2.58) can describe nonclassi-
cal mechanical limit-cycle oscillation in the resolved-sideband regime. The opposite
regime κ > Ωmech is called unresolved-sideband regime, Doppler regime, or bad-cavity
limit [Aspelmeyer et al., 2014].

Finally, the optomechanical cooperativity compares the optomechancial coupling
strength g to the optical and mechanical decay rates,

C =
g2

κΓmech
. (2.61)

As we will discuss below in Section 2.4.2, the optomechanical cooperativity determines
the onset of mechanical limit-cycle oscillations.

Experimental platforms

The optomechanical Hamiltonian (2.56) provides a theoretical model for a large va-
riety of experimental setups. A straightforward realization of our sketch shown in
Figure 2.2 is to suspend one of the end mirrors of a cavity [Arcizet et al., 2006; Gigan
et al., 2006] or to insert a dielectric membrane into a cavity with fixed end mirrors
[Thompson et al., 2008]. In experiments with microdiscs [Jiang et al., 2009], micro-
toroids [Rokhsari et al., 2005], microspheres [Ma et al., 2007], or droplets of liquid
helium [Childress et al., 2017], the optical whispering-gallery modes inside the rota-
tionally symmetric structure are coupled to mechanical vibrations of the structure.
Nanorods and nanobeams can be coupled to the evanescent radiation field of a cavity
[Anetsberger et al., 2009] such that the mechanical motion modulates the effective re-
fractive index of the cavity or its loss rate. Optomechanical crystals [Eichenfield et al.,
2009] are a very promising platform to realize large arrays of coupled optomechanical
systems [Peano et al., 2015]. They are fabricated by patterning a planar substrate such
that optical and mechanical modes localize at the same positions. In the microwave
frequency range, optomechanical systems can be realized by coupling superconducting
circuits to mechanical resonators using piezoelectric effects [O’Connell et al., 2010] or
capacitive coupling [Regal et al., 2008].
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2.4.2 Optomechanical instability

An interesting feature of the optomechanical system defined in Equations (2.56)
and (2.58) is a dynamical multistability effect if the frequency of the laser drive ex-
ceeds the cavity frequency, i.e., if the condition ∆ > 0 holds [Marquardt et al., 2006].
For such a laser drive, the radiation-pressure force excites the mechanical resonator
into periodic motion. If the mechanical damping rate Γmech is sufficiently small, the
oscillation becomes multistable, i.e., stable oscillations are possible at several different
amplitudes for a given detuning ∆. In this section, we derive analytical formulas for
this mechanical oscillation in the weak-coupling regime using a semiclassical approxi-
mation. We follow the discussion by Rodrigues and Armour [2010] and Armour and
Rodrigues [2012].

From Equation (2.58), the following equations of motion of the expectation values
〈â〉 and 〈b̂〉 can be derived:

d

dt
〈â〉 = i∆ 〈â〉+ ig0〈â(b̂+ b̂†)〉 − iαlaser −

κ

2
〈â〉 ,

d

dt
〈b̂〉 = −iΩmech〈b̂〉+ ig0〈â†â〉 −

Γmech

2
〈b̂〉 .

These two differential equations do not form a closed system, therefore, we perform
a semiclassical approximation that factorizes all expectation values of operators, e.g.,
〈âb̂〉 ≈ 〈â〉〈b̂〉. This approximation neglects correlations between the optical and me-
chanical mode and is equivalent to a truncated-Wigner-function approximation [Walls
and Milburn, 1994; Polkovnikov, 2010]. It describes the mechanical oscillation cor-
rectly in the weak-coupling limit g0 � Ωmech [Armour and Rodrigues, 2012]. Intro-
ducing the abbreviations α = 〈â〉 and β = 〈b̂〉, we obtain the following closed set of
nonlinear differential equations:

d

dt
α = i∆α+ ig0α (β + β∗)− iαlaser −

κ

2
α , (2.62a)

d

dt
β = −iΩmechβ + ig0 |α|2 −

Γmech

2
β . (2.62b)

To proceed, we assume that the mechanical oscillation is the superposition of a time-
dependent offset β and a harmonic oscillation at the mechanical frequency Ωmech,

β(t) = β(t) +B(t)e−i[Ωmecht+φ(t)] . (2.63)

For this ansatz, Equation (2.62a) takes the following form:

d

dt
α(t) = f(t)α(t) + g(t) ,

where the time-dependent coefficients f(t) and g(t) are given by

f(t) = −κ
2

+ i
(
∆ + 2g0Re[β(t)] + 2g0B(t) cos[Ωmecht+ φ(t)]

)
,

g(t) = −iαlaser .

The general solution of this differential equation is

α(t) = α(t0)e
∫ t
t0

dt′f(t′)
+

∫ ∞
−∞

dt′Θ(t− t′)e
∫ t
t′ dτf(τ)g(t′) . (2.64)
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To evaluate Equation (2.64), we assume adiabatic cavity dynamics, i.e., the quantities
β, B, and φ vary on a timescale much larger than 1/κ and the cavity field α adjusts
quasi-instantaneously to those values. Hence, we can consider them to be constant
to solve the equation of motion (2.64) of α(t). Moreover, the damping term −κ/2 in
the prefactor f(t) ensures that the homogeneous solution, given by the first term of
Equation (2.64), decays. Thus, in the long-time limit, the solution α(t) is only given by
the second term of Equation (2.64), which we evaluate using the Fourier decomposition
eia sin(Ωt+φ) =

∑∞
k=−∞ Jk(a)eik(Ωt+φ), where Jk(x) denotes the k-th Bessel function of

the first kind [Gradshteyn and Ryzhik, 1980]. We obtain the solution

α(t) = eiB̃ sin(Ωmecht+φ)
∞∑

k=−∞

iαlasere
ikφJk(−B̃)

gk
eikΩmecht , (2.65)

where we introduced the abbreviations

B̃ =
2g0B

Ωmech
, (2.66)

gk = i
[
∆ + 2g0Re(β)− kΩmech

]
− κ

2
. (2.67)

Finally, we need to determine the values of β, B, and φ self-consistently. To this
end, we insert Equations (2.63) and (2.65) in Equation (2.62b) and sort by orders of
e−iΩmecht. Since we are working in the weak-coupling limit g0 � Ωmech, we can apply
a rotating-wave approximation to drop fast-oscillating terms and obtain the following
set of differential equations:

d

dt
β(t) = −

[
iΩmech +

Γmech

2

]
β(t) + ig0Nopt(t) , (2.68a)

d

dt
B(t) = −

[
Γmech

2
+

ΓBA(t)

2

]
B(t) , (2.68b)

d

dt
φ(t) = δΩ(t) , (2.68c)

where we introduced the abbreviations

Nopt = |αlaser|2
∞∑

k=−∞

J2
k (B̃)

|gk|2
, (2.69)

ΓBA = −2g2
0κ |αlaser|2

B̃

∞∑
k=−∞

Jk(B̃)Jk+1(B̃)

|gk|2 |gk+1|2
, (2.70)

δΩ = +
2g2

0 |αlaser|2

ΩmechB̃

∞∑
k=−∞

Jk+1(B̃)Jk(B̃)

|gk+1|2 |gk|2
Re (gk+1g

∗
k) . (2.71)

Here, Nopt is the number of photons in the cavity, ΓBA is a modification of the
mechanical damping due to retarded cavity backaction, and δΩ is the modification
of the mechanical resonance frequency due to the optical spring effect [Aspelmeyer
et al., 2014]. Since the cavity field α(t) has been eliminated, B, β, and φ are now
again time-dependent quantities. Therefore, Nopt, ΓBA, and δΩ also depend on time.

Equations (2.68a) and (2.68b) have a steady-state solution dβss/dt = dBss/dt = 0,
which is implicitly defined as the solution of the following set of coupled nonlinear
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Figure 2.3: Optical backaction damping ΓBA as a function of detun-
ing ∆ and the rescaled amplitude B̃. Parameters: Γmech/Ωmech = 0,
g0/Ωmech = 0.16, αlaser/Ωmech = 0.35, and κ/Ωmech = 0.5.

equations:

βss =
g0 |αlaser|2

Ωmech − iΓmech/2

∞∑
k=−∞

J2
k (2g0Bss/Ωmech)

κ2/4 +
[
∆ + 2g0Re(βss)− kΩmech

]2 , (2.72a)

Γmech =
g0κΩmech |αlaser|2

Bss

∞∑
k=−∞

Jk (2g0Bss/Ωmech)

κ2/4 +
[
∆ + 2g0Re(βss)− kΩ

]2
× Jk+1 (2g0Bss/Ωmech)

κ2/4 +
[
∆ + 2g0Re(βss)− (k + 1)Ω

]2 .

(2.72b)

The steady-state values of βss and Bss define a constant frequency shift δΩss. Con-
sequently, the phase φ(t) increases uniformly, φ(t) = δΩsst + φ(0). Note that the
initial phase φ(0) is a free parameter. Therefore, the mechanical oscillation of an
optomechanical system driven above resonance, ∆ > 0, is an example of a limit-cycle
oscillation, which will be discussed below in Section 2.6.

For fixed parameters ∆, Ωmech, g0, αlaser, Γmech, and κ, Equation (2.72a) can be
used to calculate the offset β as a function of the amplitude B̃. Given these values
of β, the optical backaction damping ΓBA (2.70) can be evaluated as a function of B̃.
This is shown in Figure 2.3. For low amplitudes and ∆ ≥ 0, the optical backaction
damping is negative, i.e., it aims to excite mechanical oscillations. Stable oscillations
will occur at amplitudes B̃ss defined by the conditions

Γmech < −ΓBA(B̃ < B̃ss) ,

Γmech = −ΓBA(B̃ss) ,

Γmech > −ΓBA(B̃ > B̃ss) ,

i.e., at amplitudes B̃ss for which the mechanical damping Γmech compensates the
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optical backaction damping. For the case Γmech = 0 shown in Figure 2.3, these
conditions are fulfilled at each transition from negative backaction damping (blue
regions) to positive backaction damping (red regions) along the direction of the B̃
axis. There are several solutions for each value of ∆, therefore, multistability can
occur.

Obviously, the backaction damping must dominate over the mechanical damping
at zero amplitude to start limit-cycle oscillations. Therefore, the condition

0 ≤ Γmech < −ΓBA(0) (2.73)

must be satisfied to observe an onset of mechanical self-oscillations. Using the limits

lim
x→0

Jn(x) = δn,0 ,

lim
x→0

Jn(x)

x
=


∞ n = 0 ,
1/2 n = 1 ,
0 n ≥ 0 ,

we can express maximum backaction damping obtained at zero amplitude as follows:

ΓBA(0) = g2
0κ |αlaser|2

|g1|2 − |g−1|2

|g1|2 |g0|2 |g−1|2
= −g

2
0

κ
Nopt(0)×O(1) .

Therefore, condition (2.73) can be rephrased in terms of the cooperativity (2.61),

C =
g2

0Nopt(0)

κΓmech
=
|ΓBA(0)|

Γmech
& 1 ,

which means that a cooperativity larger than unity is required to start mechanical
limit-cycle oscillations.

The mechanical limit-cycle oscillation is also called phonon lasing [Khurgin et al.,
2012a,b]. Similar to an optical (photon) laser, there is a threshold pump power above
which mechanical limit-cycle oscillations and a narrowing of the mechanical linewidth
are observed [Grudinin et al., 2010; Anetsberger et al., 2009; Cohen et al., 2015].
Numerical [Qian et al., 2012; Nation, 2013] and analytical studies [Rodrigues and
Armour, 2010] predicted that phonon lasing is accompanied by reduced fluctuations
of the mechanical amplitude of oscillation in the resolved-sideband regime κ < Ωmech.
This effect can be quantified by the mechanical Fano factor

F =
〈(b̂†b̂)2〉 − 〈b̂†b̂〉2

〈b̂†b̂〉
, (2.74)

which measures the variance 〈(∆b̂†b̂)2〉 of amplitude fluctuations normalized to the
phonon-number expectation value 〈b̂†b̂〉. A coherent (i.e., classical) state has a Pois-
sonian phonon-number distribution and a Fano factor of unity. Thermal states have a
Fano factor larger than unity. A Fano factor smaller than unity indicates a squeezed
state with a sub-Poissonian phonon-number distribution, which is a nonclassical state
[Mandel, 1986; Gerry and Knight, 2005]. The Fano factor has a one-to-one relation
to the Mandel Q parameter [Mandel, 1986],

F = Q+ 1 ,
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and can be experimentally determined by measuring the second-order correlation func-
tion [Gerry and Knight, 2005]

g(2)(τ) =
〈b̂†b̂†(τ)b̂(τ)b̂〉
〈b̂†b̂〉〈b̂†(τ)b̂(τ)〉

,

whose zero-lag value g(2)(0) is related to the Fano factor as follows:

g(2)(0) =
F − 1

〈b̂†b̂〉
+ 1 .

2.5 Kerr oscillator

From the large-angle oscillation of a pendulum to the restoring force of a mechanical
spring at large elongations, nonlinearity is omnipresent in Nature [Nayfeh and Mook,
1995]. A famous example of a weakly nonlinear system is the Duffing oscillator, which
is described by the equation of motion

mẍ+mω2
0x+mεx3 = 0 ,

where m is the effective mass of the system, ω0 is the harmonic resonance frequency
and ε denotes the strength of the nonlinearity. The nonlinearity is weak in the sense
that the time-averaged potential energy is dominated by the harmonic term, |mεx4| �∣∣mω2

0x
2
∣∣. The classical Hamiltonian of the Duffing oscillator is

HDuffing =
1

2m
p2 +

1

2
mω2

0x
2 +

1

4
mεx4 . (2.75)

Since the harmonic part of the potential dominates, HDuffing can be quantized using
the eigenstates of a quantum harmonic oscillator. Promoting x and p to operators X̂
and P̂ , respectively, rewriting the Hamiltonian (2.75) in terms of the ladder operators
â and â† introduced in Appendix A, and using a rotating-wave approximation, one can
show that the quantized Duffing Hamiltonian ĤDuffing is equivalent to the so-called
Kerr Hamiltonian,

ĤKerr = ~ω0â
†â+ ~Kâ†â(â†â+ 1) + const

= ~(ω0 + 2K)â†â+ ~Kâ†â†ââ+ const ,

with K = 3εx2
zpf/4ω0. The first line of ĤKerr shows that the Kerr Hamiltonian

describes an oscillator with a nonequidistant level spacing. In the following, we will
absorb the small frequency shift 2K ∝ ε/ω0 into the harmonic resonance frequency
ω0.

The classical Duffing oscillator can be driven by external time-dependent forces,
e.g., a harmonic external force at frequency ωhar and amplitude Fhar, which is de-
scribed by the Hamiltonian

Hhar = −xFhar cos(ωhart+ φhar) , (2.76)

or a parametric modulation of the resonance frequency ω0, which corresponds to the
Hamiltonian

Hpar =
1

2
mδω2

parx
2 cos(ωpart+ φpar) . (2.77)
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To obtain a quantum description of these external forces, we replace x and p by the
corresponding operators and switch to a rotating frame defined by Û(t) = e−iωharâ

†ât.
Setting ωpar = 2ωhar and dropping rapidly rotating terms in a rotating wave approxi-
mation, we arrive at the following Hamiltonian of a driven Kerr oscillator:

Ĥ0 = −~∆â†â+ ~Kâ†â†ââ+ ~
(
α1â

† + H.c.
)

+ ~
(
α2â

†â† + H.c.
)
, (2.78)

where we introduced the detuning

∆ = ωhar − ω0 =
ωpar

2
− ω0 (2.79)

between the drive frequency ωhar = ωpar/2 and the natural frequency ω0 of the oscil-
lator. The amplitudes of the harmonic (single-photon) and parametric (two-photon)
drives are denoted by α1 = −e−iφextFext/

√
8m~ω0 and α2 = e−iφparδω2

par/8ω0, respec-
tively. By embedding Equation (2.78) into a QME describing single-photon losses, we
obtain the following model of a driven dissipative Kerr oscillator, which will we use
as a generic model of a nonlinear quantum system in Chapter 4:

d

dt
ρ̂ = − i

~

[
Ĥ0, ρ̂

]
+ κ(nth + 1)D[â]ρ̂+ κnthD[â†]ρ̂ , (2.80)

Here, κ denotes the energy decay rate and nth is the thermal photon occupation
number of the oscillator due to an interaction with a finite-temperature bath. In the
next sections, we will review the steady-state solution of the Kerr oscillator for the
harmonic and the parametric drive separately.

2.5.1 Harmonic drive

We now consider Equation (2.80) for the case α2 = 0. Without loss of generality,
we assume α1 to be real and nonnegative. Similar to the treatment of the optome-
chanical system in Section 2.4.2, we derive an equation of motion for the expectation
value α = 〈â〉 and perform a semiclassical approximation by factorizing expectation
values of multiple operators. In this way, we obtain the following equation of motion
[Drummond and Walls, 1980]:

d

dt
α =

(
i∆− κ

2

)
α− 2iK |α|2 α− iα1 .

This equation has a steady-state solution dαss/dt = 0. Decomposing αss = |αss| eiϕss

in polar coordinates, we find the following set of conditions for the steady-state am-
plitude and phase:

0 = −κ
2
|αss| − α1 sin(ϕss) ,

0 = ∆− 2K |α|2ss −
α1

|αss|
cos(ϕss) .

Elimination of ϕss yields a polynomial whose roots define |αss|,

4K2 |αss|6 − 4K∆ |αss|4 +

(
∆2 +

κ2

4

)
|αss|2 − α2

1 = 0 . (2.81)
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Given a steady-state amplitude |αss|, the corresponding phase ϕss up to integer mul-
tiples of 2π is

ϕss =

{
− arcsin(κ |αss| /2α1) if ∆− 2K |αss|2 ≥ 0 ,

−π + arcsin(κ |αss| /2α1) if ∆− 2K |αss|2 < 0 .
(2.82)

Despite the fact that, in general, the roots of Equation (2.81) need to be found numer-
ically, we can still analytically determine the number of stable solutions. To simplify
the notation, it is beneficial to introduce the dimensionless quantities [Meaney et al.,
2014]

δ =
∆

κ
, (2.83)

P =
α2

1K

κ3
, (2.84)

α0 =

√
K

κ
αss , (2.85)

which represent a dimensionless detuning, a dimensionless rescaled drive power, and
a rescaled amplitude. In terms of these quantities, Equation (2.81) reads as

4 |α0|6 − 4δ |α0|4 +

(
δ2 +

1

4

)
|α0|2 − P = 0 . (2.86)

This equation has a unique solution |α0|2 if the condition δ <
√

3/2 holds. In the
case δ >

√
3/2, there are three solutions if the drive power P is in the interval

(P−(δ), P+(δ)) defined by the two boundaries

P±(δ) =
δ

9

(
δ2

3
+

3

4

)
± 1

3
√

3

√
δ2

3
− 1

4

3

. (2.87)

On the boundaries P = P−(δ) or P = P+(δ), there are two solutions for |α0|2. The
two boundaries P±(δ) coalesce at the critical point (δcrit, Pcrit) = (

√
3/2,
√

3/18), as
shown in Figure 2.4(a).

All properties of the rescaled semiclassical solution |α0| are defined by Equa-
tion (2.86), which is independent of the ratio K/κ. Classically, this ratio merely
rescales the amplitude of oscillation as shown in Equation (2.85). However, in the
quantum case, it also determines the distribution of the quantum fluctuations in
phase space, i.e., the shape of the steady-state Wigner function. The deformation
of the Wigner function as a function of K/κ is illustrated in Figure 2.4(b) and can be
analyzed by transforming the QME (2.80) to a frame where the semiclassical solution
αss has been subtracted,

d

dt
ρ̂′ = − i

~

[
Ĥ ′0, ρ̂

′
]

+ κ (nth + 1)D[b̂]ρ̂′ + κnthD[b̂†]ρ̂′ , (2.88)

Ĥ ′0(−αss) = −~κ
(
δ − 4 |α0|2

)
â†â+ ~κ

(
α2

0â
†â† + H.c.

)
+ 2~κ

√
K

κ

(
α0â

†â†â+ H.c.
)

+ ~κ
K

κ
â†â†ââ , (2.89)

where ρ̂′ = D̂(−αss)ρ̂D̂
†(−αss) and αss =

√
κ/Kα0. In the limit K � κ, the steady-

state amplitude |αss| is very large and the terms in the second line of the Hamilto-
nian (2.89) can be neglected. Therefore, the steady state is a squeezed state at a large
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Figure 2.4: (a) Amplitude of the rescaled semiclassical solution α0

of the driven and damped Kerr oscillator, defined by Equations (2.78)
and (2.80), subject to a harmonic drive, i.e., α2 = 0. The gray lines
indicate the boundaries P±(δ) defined in Equation (2.87). Inside the
gray lines, there are three solutions for α0. The stable solutions at
large and small amplitude are shown in the left and right subplot,
respectively. Outside this region, there is only one stable solution. (b)
Wigner function of the steady-state solution ρ̂ss for the parameters
(P, δ) = (3.0, 1.0), indicated in (a) by the blue circle, and different
ratios of K/κ. The plot area is centered around the semiclassical
steady-state amplitude αss =

√
κ/Kα0. The shape of the Wigner

function depends on the ratio K/κ.

amplitude and its Wigner function has the shape of an ellipse. If the ratio K/κ is
increased, |αss| decreases and the term proportional to

√
K/κ in Equation (2.89) be-

comes relevant. This leads to a deformation of the Wigner function to a banana shape.
In the limit K � κ, the steady-state amplitude converges to zero, Equation (2.88)
reduces to an undriven but damped Kerr oscillator, whose steady-state solution is the
vacuum state.

2.5.2 Parametric drive

We now consider a purely parametric drive, i.e., we set α1 = 0. In this case, the
Hamiltonian (2.78) can be rewritten as follows:

Ĥ0 = −~∆â†â+ ~K
(
â†â† +

α∗2
K

)(
ââ+

α2

K

)
− ~ |α2|2 . (2.90)

In the following, we will ignore the irrelevant constant term ~ |α2|2. For a resonant
parametric drive, i.e., ∆ = 0, the ground-state subspace of this Hamiltonian is spanned
by the two coherent states |±i

√
α2/K〉 defined in Appendix A.1. Moreover, the parity

operator Π̂, defined in Equation (2.49), commutes with Ĥ at zero detuning, i.e., parity
is a conserved quantity. Thus, a good basis to describe the ground-state subspace are
the even- and odd-parity cat state

|C±(α)〉 =
|α〉 ± |−α〉√
2± 2e−2|α|2

, (2.91)
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where α = i
√
α2/K.

For nonzero detuning, the term −~∆â†â breaks parity conservation and lifts the
degeneracy between the two cat states. Their expectation values with respect to the
photon-number operator are

〈C±(α)| â†â |C±(α)〉 = |α|2 1∓ e−2|α|2

1± e−2|α|2
. (2.92)

Note that both expectation values converge to the value |α|2 in the limit |α|2 �
1/2, because the overlap between the coherent states decreases exponentially as a
function of the amplitude α. In this limit, the two cat states |C±(α)〉 become again
indistinguishable with respect to their photon-number expectation value.

Having understood the closed-system dynamics defined by the Hamiltonian (2.90),
we can now consider the dissipative case defined by Equation (2.80). The single-
photon dissipators break parity conservation, too, such that each loss of a photon to
the environment changes the parity of the cat state. In the limit κ� K, the amplitude
α of the cat state, which has been derived by rewriting the Kerr Hamiltonian in the
form (2.90), will be unchanged up to corrections of O(κ/K) in the presence of single-
photon loss, but the system will evolve to an incoherent mixture of the two coherent
states |α〉 and |−α〉 that constitute the cat states |C±(α)〉. We will use these results
in Section 4.5.

2.6 Synchronization

In Section 2.4.2, we found that a blue-detuned laser drive applied to an optomechanical
system excites mechanical oscillations at a constant amplitude without determining
the phase of the oscillation. This is the defining feature of a limit-cycle oscillator
and allows one to study synchronization phenomena. In this thesis, we will discuss
synchronization in the quantum regime in Chapters 5 and 6. As a preparation, we will
introduce classical synchronization in this section. Moreover, we will review important
quantum limit-cycle oscillators and quantum synchronization measures that have been
proposed in the literature.

2.6.1 Classical limit-cycle oscillator

Synchronization is the adjustment of rhythms of self-sustained oscillations due to a
weak perturbation [Pikovsky et al., 2003].

A self-sustained oscillator is an autonomous active system [Pikovsky et al., 2003].
Active means that the system contains an internal source of energy that sets it into
periodic motion. Autonomous means that the system’s equations of motion are time
independent. Thus, after some transient dynamics depending on the initial conditions,
the periodic motion will be characterized only by internal parameters of the system.
For a classical noiseless system, this motion can be represented by a closed curve in
phase-space, which is called the limit cycle and is sketched in Figure 2.5(a). One can
define a phase ϕ that parametrizes the state of oscillation along the limit cycle and
that increases uniformly at the natural angular frequency ω0 of oscillation,

dϕ

dt
= ω0 . (2.93)

The limit cycle is stable, i.e., trajectories of systems with initial conditions in the
vicinity of the limit cycle will eventually converge to the limit cycle [Strogatz, 2015;
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Figure 2.5: (a) Phase-space portrait of the dynamics of a limit-cycle
oscillator. The trajectories of different initial conditions (thin lines)
converge in the long-time limit to the same closed curve in phase space,
which is called the limit cycle (thick black line). (b) Amplitude x(t) as
a function of time for the blue trajectory shown in (a). After transient
dynamics, the system oscillates harmonically at frequency ω0 and at
a constant amplitude. The phase of oscillation is free, therefore, after
a perturbation of the system by a kick (gray arrow from the blue to
the red dot), the amplitude relaxes back to its constant value, but the
perturbation of the phase persists.

Pikovsky et al., 2003]. More specifically, the limit-cycle amplitude is asymptotically
stable and the phase along the limit cycle is neutrally stable: If the amplitude of
oscillation is perturbed, the system will relax back to the limit-cycle amplitude of
oscillation and the difference between the instantaneous amplitude and the limit cycle
remains bounded for all times. However, if the phase of oscillation is perturbed, the
system will not relax back to the original phase but it will oscillate along the limit
cycle with the new perturbed phase as shown in Figure 2.5(b). In the following, we
will also use the name limit-cycle oscillator to denote a self-sustained oscillator.

A classic example of a self-sustained oscillator is the van der Pol (vdP) oscilla-
tor [van der Pol, 1926]. Its dynamics is given by the second-order differential equa-
tion [Pikovsky et al., 2003]

ẍ+ ω2
0x− 2εẋ(1− βx2) = 0 , (2.94)

where x denotes the position of the oscillator and ω0 is the natural frequency of
oscillation. The parameters ε and β determine the shape of the limit cycle and the
amplitude of oscillation, respectively. In the limit of a weak nonlinearity, ε � ω0,
the solution of the vdP differential equation (2.94) describes a harmonic oscillation at
frequency ω0 whose amplitude and phase vary slowly compared to the period 2π/ω0.
To separate this fast oscillation from the much slower amplitude and phase dynamics,
we switch to a rotating frame,

x(t) =
1

2

[
A(t)eiω0t +A∗(t)e−iω0t

]
. (2.95a)

ẋ(t) =
1

2
iω0

[
A(t)eiω0t −A∗(t)e−iω0t

]
, (2.95b)
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Figure 2.6: Different synchronization scenarios. (a) For mutual syn-
chronization, limit-cycle oscillators (blue circles) form a network and
influence each other reciprocally. (b) For master-slave synchroniza-
tion, one limit-cycle oscillator (green circle) influences the other limit-
cycle oscillator(s) unidirectionally (blue circle). (c) Synchronization of
a limit-cycle oscillator (blue circle) to an external signal (green wave).
This is an effective model for master-slave synchronization and for
synchronization in a network if a mean-field approach is used.

where the complex variable A(t) captures the slow amplitude and phase dynamics.
Its equation of motion is

d

dt
A = ε

(
1− β

4
|A|2

)
A . (2.96)

This result reveals that the amplitude of a vdP oscillator is stabilized by the balance
between a gain of energy that grows linearly with the amplitude and a nonlinear
damping term.

2.6.2 Classical synchronization phenomena

To study synchronization phenomena, a weak perturbation is applied to the limit-
cycle oscillator. In the following, we will call this perturbation the signal. A method
to generate such a perturbation is to couple limit-cycle oscillators with a coupling
strength ε, such that each oscillator is influenced by the motion of other oscillators
in the network. This case is called mutual synchronization and is illustrated in Fig-
ure 2.6(a). An example of mutual synchronization is the synchronization of clapping
in applauding crowds [Néda et al., 2000].

Individual limit-cycle oscillators in the network may differ in their susceptibility
to perturbations. As an extreme limit, one can imagine a network of only two oscil-
lators where the susceptibility of one oscillator is zero, such that this oscillator is not
influenced by the motion of the other one at all. This scenario describes unidirectional
synchronization and is illustrated in Figure 2.6(b). An example of unidirectional syn-
chronization is the adjustment of our biological clocks to the natural day-night rhythm
dictated by Earth’s rotation [Aschoff, 1965].

As an effective model of unidirectional synchronization, one can consider only one
limit-cycle oscillator that is subjected to an external signal of strength ε, as shown in
Figure 2.6(c). The same picture is obtained if one applies mean-field approximations
to a network of coupled limit-cycle oscillators. In this case, the effect of all other os-
cillators on a certain limit-cycle oscillator is treated as an external signal that must be



36 2. Theoretical Background

determined self-consistently. For simplicity, we will focus on the case of unidirectional
synchronization in the following discussion, which is based on the standard textbook
by Pikovsky et al. [2003].

The perturbation introduced by the external signal is considered to be “weak” in
the sense that the force exerted on the limit-cycle oscillator influences its phase but
not its amplitude dynamics. In this limit, one can ignore the amplitude dynamics and
derive an effective equation of motion for the phase ϕ, which has the general form

dϕ

dt
= ω0 + εq(mϕ− nωt) . (2.97)

Here, m and n are integers that are relatively prime and ω is the frequency of the
external signal. The 2π-periodic function q describes the effective response of the limit-
cycle oscillator to a periodic external signal and is called phase sensitivity function or
phase response curve [Pikovsky, 2015]. It can be calculated by averaging the equation
of motion of the slowly varying complex amplitude A in a frame rotating at the signal
frequency ω over a period 2π/ω. This eliminates all rotating terms except for the
resonant ones which fulfill nω ≈ mω0. Defining the relative phase

φm:n = mϕ− nωt (2.98)

and the detuning

∆m:n = mω0 − nω , (2.99)

we can rewrite Equation (2.97) as follows:

dφm:n

dt
= ∆m:n + εmq(φ) . (2.100)

The same equation can be obtained for the case of mutually coupled oscillators. In
the simplest case, the signal frequency is close to the natural frequency of oscillation,
i.e., m = n = 1, and −q is a sine function. This yields the Adler equation describing
1 : 1 synchronization [Adler, 1946]

dφ

dt
= ∆− ε sin(φ) ,

where φ = φ1:1 and ∆ = ∆1:1.
Depending on the detuning ∆m:n the signal strength ε, and the phase sensitivity

function q(φ), Equation (2.100) gives rise to different time evolutions of the relative
phase φm:n [Pikovsky et al., 2003; Strogatz, 2000], which are summarized in Figure 2.7.
In the following, we will denote the extremal values of the phase sensitivity function
by qmax and qmin.

Phase locking If the condition εmqmin ≤ ∆m:n ≤ εmqmax holds, Equation (2.100)
has at least one stable fixed point and the relative phase φm:n takes a constant
value φ0, as shown by the blue curve in Figure 2.7. This implies that the phase
of the limit-cycle oscillator is determined by the phase of the signal according
to the relation

ϕ(t) =
1

m
(φ0 + nωt) .

The value of the phase lag φ0 depends on ε and ∆.
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Figure 2.7: Main plot: Sketch of the evolution of the relative phase
φ(t) = φ1:1(t) = ϕ(t)− ωt between limit-cycle oscillator and signal for
different parameters of the detuning ∆ = ∆1:1 = ω0 − ω and the
signal strength ε. In the phase-locked regime, φ(t) is either constant
(curve starting with a blue square) or it oscillates around a constant
mean value (orange, triangle pointing upwards). In the regime of fre-
quency entrainment, the relative phase increases by 2π during phase
slips which are separated by plateaus of almost constant phase (red,
circle). On average, the relative phase increases, i.e., the system is not
synchronized. For very large detuning, the relative phase increases
linearly in time (black, triangle pointing downwards). Inset: Re-
gion of synchronization, called Arnold tongue, for 1 : 1 phase locking
(gray area). The markers indicate the parameters of the corresponding
curves in the main sketch.

More generally, there may be situations where there is no constant solution φ0,
but the time-dependent relative phase φm:n(t) oscillates around a fixed mean
value φ0 such that the difference |φm:n(t)− φ0| is bounded, i.e., the condition

(|φm:n(t)− φ0| mod 2π) < 2π

holds. This is shown by the orange curve in Figure 2.7. In this case, the phase
ϕ(t) of the limit-cycle oscillator is still locked to the phase of the signal on
average.

Note that in the case of n : m phase locking with n 6= 1 or m 6= 1, the oscillation
frequencies of the signal and the limit-cycle oscillator, ω and ϕ̇, respectively, are
different.

Frequency locking In the case of 1 : 1 synchronization, i.e., n = m = 1, phase
locking implies that the frequencies of signal and limit-cycle oscillator are the
same, ϕ̇ = ω. This phenomenon is called frequency locking.

Again, even if there is no constant solution for the phase lag φ0, frequency
locking can still be present on average.

Frequency entrainment Outside the range of phase locking, i.e., if the conditions
∆m:n & εmqmax or ∆m:n . εmqmax hold, the relative phase φm:n is no longer
constant. However, sufficiently close to the regime of phase locking, the signal
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still influences the limit-cycle oscillator and its average frequency deviates from
the natural frequency of oscillation. In this regime, the relative phase increases
by 2π in rapid phase slips that are interchanged with intervals of almost constant
relative phase, as shown by the red curve in Figure 2.7.

Incoherence For very large detuning, ∆m:n � εmqmax or ∆m:n � εmqmin, the
limit-cycle oscillator is not affected by the external signal at all. Therefore,
it oscillates at its natural frequency of oscillation ω0 and the relative phase
between φm:n(t) = mω0t − nωt increases linearly, as shown by the black curve
in Figure 2.7.

With increasing detuning |∆|, there is a crossover from frequency entrainment
to incoherence. During this crossover, the frequency of phase slips grows until
φ(t) increases uniformly.

In the limit of a weak signal strength ε, the regions of n : m phase locking in the
∆ − ε phase diagram have a triangular shape as shown in the inset of Figure 2.7.
Because of this characteristic shape, the regions of synchronization are called Arnold
tongues. If the signal strength ε increases, a crossover from synchronization to various
types of forced oscillations happens. During this crossover, the physical picture of a
limit-cycle oscillator as an individual entity, which is separate from the signal or other
limit-cycle oscillators in the network, breaks down. Instead, one should analyze the
combined system consisting of the limit-cycle oscillator and the signal, or the entire
network of limit-cycle oscillators, as a single dynamical system [Pikovsky et al., 2003].
Consequently, the Arnold tongue loses its meaning as the region in the ∆ − ε phase
diagram where synchronization occurs. So far, no definition of the “upper end” of the
Arnold tongue for classical synchronization has been given [Pikovsky, 2015].

The different phenomena described so far apply both to mutually and unidirec-
tional coupled limit-cycle oscillators. However, there are some effects that occur only
in networks of mutually coupled limit-cycle oscillators. The mutual coupling may
cause a suppression of oscillation, called oscillation quenching, which arises if the
coupling introduces additional dissipation that cannot be compensated by the inter-
nal source of energy of the self-sustained oscillators [Pikovsky et al., 2003]. As a
consequence, the oscillation breaks down and the oscillators evolve towards a time-
independent state. One distinguishes two different types of oscillation quenching,
depending on the type of the final state [Koseska et al., 2013]:

Amplitude death All oscillators approach the same fixed point of their equation of
motion, i.e., the resulting steady-state of the network is homogeneous.

Oscillation death The oscillators approach different fixed points, i.e., the resulting
steady-state of the network is inhomogeneous.

Moreover, oscillators in a subpart of a network could be phase locked whereas
other oscillators remain incoherent. This phenomenon is called partial synchronization
[Strogatz, 2000] and happens, e.g., in the Kuramoto model at the transition from an
incoherent to a fully synchronized state [Kuramoto, 1984] and in disordered networks
of oscillators [Ko and Ermentrout, 2008]. A particularly interesting case are so-called
chimera states where synchronized and incoherent subpopulations coexist in networks
of identical oscillators [Kuramoto and Battogtokh, 2002; Abrams and Strogatz, 2004].

Finally, synchronization can also be studied in chaotic systems if the oscillation
resembles a periodic oscillation with a randomly varying amplitude and period time
[Pikovsky et al., 2003]. A famous example of such a chaotic oscillator is the Lorenz
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system [Lorenz, 1963]. A mean frequency of oscillation can be defined by counting
the number of periods N∆T in a time interval ∆T ,

f =
N∆T

∆T

When two or more chaotic oscillators are coupled, the following phenomena may
happen [Pikovsky et al., 2003; Boccaletti et al., 2002]:

Phase synchronization The oscillators adjust their mean frequencies of oscillation
such that there is phase locking, but the amplitude dynamics remains chaotic,
i.e., there is no correlation between the amplitudes of the oscillators.

Complete synchronization The coupling influences both the mean frequencies and
the amplitudes of the oscillators, such that their trajectories in phase space
almost coincide or even become identical.

Variations of these scenarios can be observed, e.g., complete synchronization with a
time delay between the two trajectories, so-called lag synchronization, or intermit-
tent synchronization, where periods of synchronized motion are interrupted by local
incoherent dynamics [Boccaletti et al., 2002].

2.6.3 Quantum limit-cycle oscillators

Classical synchronization has been observed in a broad range of experiments [Pikovsky
et al., 2003], among them electrical circuits [Pecora and Carroll, 1990], laser arrays
[Winful and Rahman, 1990; Roy and Thornburg, 1994], arrays of Josephson junctions
[Benz and Burroughs, 1991], and micromechanical oscillators [Agrawal et al., 2013;
Matheny et al., 2014]. By miniaturizing a classical self-sustained oscillator, one ul-
timately obtains a quantum-mechanical limit-cycle oscillator. With our increasing
abilities to fabricate and control micro- and nanomechanical objects, quantum limit-
cycle oscillators come within experimental reach.

Consequently, several proposals have been made to study quantum synchroniza-
tion: Zhirov and Shepelyansky [2006] proposed a dissipative quantum system that
can be implemented in current-driven Josephson junctions or in cold-atom experi-
ments. Heinrich et al. [2011] suggested to couple optomechanical systems that are
driven into mechanical limit-cycle motion. Holmes et al. [2012] considered an array
of nanomechanical resonators that are coupled by a microwave cavity. Lee and Cross
[2013] proposed to use nonlinear optical cavities to implement a limit-cycle oscillator.
Finally, Lee and Sadeghpour [2013] and Walter et al. [2014] introduced a quantum
counterpart of the vdP limit-cycle oscillator which can be implemented with trapped
ions or optomechanical systems. The quantum vdP oscillator is modeled by the QME

d

dt
ρ̂ = − i

~

[
~ω0â

†â, ρ̂
]

+ γgD[â†]ρ̂+ γdD[â2]ρ̂ ,

which describes a harmonic oscillator subject to dissipative single-photon gain and
two-photon loss processes. This QME implements the circular limit-cycle oscillation
of a classical vdP oscillator in the weakly nonlinear regime ε � ω0, which can be
verified by calculating the semiclassical equation of motion of 〈â〉 = A(t)e−iω0t. The
amplitude A(t) evolves according to the equation of motion

d

dt
A =

γg

2

(
1− 2γd

γg
|A|2

)
A , (2.101)
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which is identical to Equation (2.96), if one defines ε = γg/2 and β/4 = 2γd/γg.
If the QME (2.101) is solved for a coherent initial state, a periodic oscillation at

the natural frequency ω0 is found as expected from the classical equation of motion.
However, quantum fluctuations make an important difference to the classical case
in the long-time limit: Since the phase of oscillation along the limit cycle is free, the
quantum system will dephase and explore all possible phases of oscillation. Therefore,
an initial coherent state will spread along the phase direction and the system will
ultimately reach a completely dephased, rotationally symmetric steady state.

The proposals mentioned above have been justified and motivated by their semi-
classical equations of motion, which reproduce a classical limit-cycle oscillator. A
framework that defines quantum synchronization independently of any classical limit
has been missing so far and is the subject of Chapter 5.

2.6.4 Quantum synchronization measures

To quantify the degree of quantum synchronization, various measures have been
proposed that generalize the concepts of classical synchronization reviewed in Sec-
tion 2.6.2 to the quantum regime. They can be grouped into several categories:

Measures of phase localization Classically, phase locking is defined as a fixed or
at least bounded relative phase φ between two coupled limit-cycle oscillators or
between a limit-cycle oscillator and an external signal. In quantum systems,
mutual coupling or external signals aim to establish a fixed relative phase, too.
However, this process competes with the dephasing due to quantum fluctuations.
As a consequence, the relative phase will in general not reach a fixed value, but
the uniform distribution of the relative phase φ in the limit-cycle state will
localize at a certain relative phase. This localization can be used to quantify
phase locking.

The phase distribution P (φ|ρ̂) of a state ρ̂ can be obtained by calculating its
Wigner function Wρ̂(α), introduced in Section 2.3, and integrating out the am-
plitude [Lee and Sadeghpour, 2013],

P (φ|ρ̂) =

∫ ∞
0

dr rWρ̂(re
iφ) .

Alternatively, one can use the phase states |φ〉 introduced by Barnett and Pegg
[1986] to calculate a phase distribution [Hush et al., 2015],

P (φ|ρ̂) = 〈φ| ρ̂ |φ〉 .

The relative phase distribution P (φ|ρ̂) can be condensed into a single-number
measure of quantum synchronization by taking the maximum difference between
the phase distribution in the presence of a signal and the uniform phase distri-
bution of the limit-cycle state [Hush et al., 2015],

S(ρ̂) = max
φ∈[0,2π)

[
P (φ|ρ̂)− 1

2π

]
.

An alternative approach to obtain a single-number measure of quantum synchro-
nization is inspired by the order parameter of the Kuramoto model [Kuramoto,
1984]. Here, one calculates the complex quantity [Ludwig and Marquardt, 2013;
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Weiss et al., 2016]

S′(ρ̂) =
〈â〉√
〈â†â〉

,

where the expectation values are taken with respect to the state ρ̂. For a phase-
symmetric state, i.e., the limit-cycle state, the numerator 〈â〉 is zero. If an
external signal localizes the state at a mean relative phase φ0, this phase invari-
ance is broken and the numerator acquires a finite value 〈â〉 ≈

√
〈â†â〉eiφ0 . The

denominator normalizes S′ such that its absolute value for a coherent state is
unity. A drawback of this measure is that it is sensitive to a shift of the center
of the limit cycle by the signal.

Measures of the oscillation frequency Instead of characterizing the relative phase
φ, Walter et al. [2014] proposed to quantify frequency entrainment and frequency
locking by calculating the average frequency of oscillation of the limit-cycle os-
cillator. Classically, this frequency can be extracted from the power spectrum
of an oscillating variable. The corresponding quantum-mechanical steady-state
power spectrum is defined as follows:

Sâ†â(ω) =

∫ ∞
−∞

dτ
〈
â†(τ)â(0)

〉
ss
eiωτ .

The power spectrum has a dominating peak at the average frequency of os-
cillation, which allows one to track the transition from frequency locking via
entrainment to incoherence.

Distance measures between trajectories Mari et al. [2013] proposed to quantify
synchronization in networks of coupled oscillators based on the distance between
the trajectories of individual limit-cycle oscillators in phase space. This approach
generalizes the notion of complete synchronization in chaotic systems to the
quantum case. In continuous-variable systems, such as optomechanical systems
or the quantum vdP oscillator, the state of each limit-cycle oscillator j in the
network can be characterized by the position and momentum operators q̂j and
p̂j , respectively. Using the operators for the relative position and momentum
between the oscillators j and k,

q̂−(t) =
1√
2

[q̂j(t)− q̂k(t)] and p̂−(t) =
1√
2

[p̂j(t)− p̂k(t)] ,

the following measure for complete quantum synchronization can be constructed

Sc =
1〈

q̂2
−(t) + p̂2

−(t)
〉 .

Whereas this measure would diverge for completely synchronized classical sys-
tems, it can be shown that the Heisenberg uncertainty principle imposes the
bound Sc(t) ≤ 1/~ in quantum systems. Importantly, this quantum synchro-
nization measure allows one to isolate the impact of quantum fluctuations on
synchronization by subtracting the semiclassical dynamics.

A measure that generalizes the notion of phase synchronization of chaotic sys-
tems to the quantum regime can be constructed in a similar way [Mari et al.,
2013]: Using the position and momentum operators, one calculates the ladder
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operator âj(t) = [q̂j(t) + ip̂j(t)]/
√

2, which can be decomposed as follows:

âj(t) =
[
rj(t) + â′j(t)

]
eiϕj(t) ,

where rj(t) and ϕj(t) denote the amplitude and phase of the expectation value
〈âj(t)〉, respectively. The quadratures q̂′j(t) and p̂′j(t) of the new operator

â′j(t) =
1√
2

[q̂′j(t) + ip̂′j(t)]

describe fluctuations of the amplitude and phase, respectively. Consequently,
the phase difference between the oscillators j and k is given by

p̂′−(t) =
1√
2

[p̂′j(t)− p̂′k(t)] .

Phase synchronization can now be quantized by the measure

Sp =
1

2
〈
p̂′−(t)2

〉 ,
which fulfills Sp ≤ 1/~ for states with a positive Pρ̂ function.

Measures of correlations or entanglement Classical synchronization can be quan-
tified by studying correlations in the motion of coupled oscillators [Boccaletti
et al., 2002]. This approach can be generalized to the quantum regime by cal-
culating correlations between expectation values [Galve et al., 2017; Zhu et al.,
2015] or by studying the mutual information between two oscillators [Ameri
et al., 2015]. Mutual information captures both classical correlations and quan-
tum effects, the so-called quantum discord [Modi et al., 2012], which allows
one to distinguish between classical and quantum effects in synchronization. In
a similar line of reasoning, entanglement has been proposed as a measure of
quantum synchronization [Lee et al., 2014].

However, these methods to quantify synchronization are subject of an ongoing
scientific controversy since inconsistent results have been reported: Roulet and
Bruder [2018b] gave an example of a system of two coupled limit-cycle oscil-
lators where mutual information and a synchronization measure based on the
relative phase distribution give contradictory results. Moreover, in this sys-
tem, it was found that the presence of synchronization implies entanglement
between the oscillators, but the converse statement is not necessarily true. Lee
et al. [2014] reported an entanglement tongue similar to the Arnold tongue of
synchronization, but the entanglement tongue appeared only above a critical
coupling strength. This effect could be related to the different structure of the
considered limit cycles and the use of different entanglement measures. Finally,
synchronization without any entanglement has been reported by Mari et al.
[2013] and Ameri et al. [2015] for large limit-cycle amplitudes. These results can
be understood as the consequence of a transition from quantum synchronization
to classical synchronization if the limit-cycle amplitude increases.

2.7 Quantum computing

Simulating quantum systems on classical hardware is inefficient because the number
of degrees of freedom of a quantum system grows exponentially with the system size.
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Therefore, already a moderate-size quantum system composed of about 60 two-level
systems exceeds the capabilities of current classical supercomputers. Already in the
early days of quantum computing, Feynman [1982] pointed out that the same task
can be performed efficiently on a computer that obeys the laws of quantum mechan-
ics. Since then, it has been predicted that quantum computers will outperform their
classical counterparts on specific tasks [Deutsch and Jozsa, 1992; Shor, 1997] not only
because of their ability to efficiently store quantum states in an exponentially large
Hilbert space, but also because of their ability to use interference and entanglement
as additional resources for information processing [Veitch et al., 2012; Stahlke, 2014;
Rahimi-Keshari et al., 2016]. Recently, the first experimental demonstration of this
so-called quantum supremacy has been reported [Arute et al., 2019; Pednault et al.,
2019].

In Chapter 6, we will use quantum simulation techniques to implement and study
quantum synchronization on a state-of-the-art quantum computer. As a preparation,
we will review the basics of quantum information processing and we will introduce the
concept of quantum simulation in this section. This review is based on the standard
textbook by Nielsen and Chuang [2011].

2.7.1 Elements of quantum computing

A classical computer stores information in a register of bits, where each bit represents
a discrete value of either 0 or 1. A quantum computer stores information in a register
of quantum bits (qubits). Each qubit is a quantum two-level system and its state is a
superposition of the basis states |0〉 and |1〉,

|ψ〉 = α |0〉+ β |1〉 ,

where α and β are complex numbers fulfilling the normalization condition |α|2+|β|2 =
1. Since quantum states are defined only up to an irrelevant global phase factor, the
state |ψ〉 has two independent degrees of freedom, which are, e.g., the absolute value
of α and the relative phase between α and β. The basis states |0〉 and |1〉 are the
eigenstates of the Pauli operator Ẑ ≡ σ̂z,

Ẑ |0〉 = + |0〉 ,
Ẑ |1〉 = − |1〉 . (2.102)

Multiple qubits can be combined to a quantum register. In this thesis, we will follow
the convention to represent the most-significant bit by the left-most qubit in the
quantum register, i.e., a N -qubit register in the state

|qN−1qN−2 . . . q0〉 = |qN−1〉N−1 ⊗ |qN−2〉N−2 ⊗ · · · ⊗ |q0〉0 ,

represents the number
∑N−1

j=0 qj2
j in binary notation where qj ∈ {0, 1}. The Hilbert

space H(N) of this N -qubit register is the product of N single-qubit Hilbert spaces
H(1),

H(N) = H(1)
N−1 ⊗H

(1)
N−2 ⊗ · · · ⊗ H

(1)
0 , (2.103)

and has the dimension 2N . Therefore, the number of degrees of freedom of the quan-
tum state of this register is

2(2N − 1) , (2.104)
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i.e., the number of parameters that can be stored scales exponentially with the length
N of the register.

On a classical computer, computations are performed by applying logical opera-
tions, e.g., AND, OR, NOT, etc., which manipulate the state of the classical register.
These operations are called gates. Similarly, on a quantum computer, calculations are
performed by applying quantum gates that change the state of the quantum register.
For instance, the quantum-mechanical equivalent of a NOT gate is the Pauli operator
X̂ ≡ σ̂x,

X̂ |0〉 = |1〉 ,
X̂ |1〉 = |0〉 . (2.105)

To preserve the normalization condition 〈ψ|ψ〉 = 1 of quantum states, quantum gates
must be unitary operations.

To enable arbitrary calculations, a classical computer must be able to perform
any logical operation on its register. Therefore, it must at least provide a set of basic
logical operations that can be combined to construct any other logical gate. This set
is called a universal set of logical gates. The smallest universal set of logical gates
is given by the NAND gate, which is a logical AND gate followed by a NOT gate.
Similarly, a quantum computer must be able to perform any unitary transformation
of the state of its quantum register. Therefore, it must provide a universal set of
quantum gates which allows one to construct any unitary operation by a suitable
combination of the basic quantum gates. A possible universal set of quantum gates is
given by the Hadamard gate Ĥ,

Ĥ |0〉 =
1√
2

(|0〉+ |1〉) ,

Ĥ |1〉 =
1√
2

(|0〉 − |1〉) , (2.106)

the so-called π/8-gate T̂ ,

T̂ |0〉 = |0〉 ,
T̂ |1〉 = eiπ/4 |1〉 , (2.107)

and the two-qubit CNOT gate, which applies a NOT gate to its target qubit if the
control qubit is in the state |1〉, but does not change the target qubit if the control
qubit is in the state |0〉.

A convenient way to represent quantum calculations graphically are quantum cir-
cuit diagrams. An example of a quantum circuit diagram is

q0 : |0〉 X • • T Z

q1 : |1〉 H X |0〉

(2.108)

In a circuit diagram, a quantum register is represented by a set of horizontal lines, each
of them representing one qubit. Single-qubit operations are depicted by boxes that
are placed on the line of the corresponding qubit. Controlled two-qubit operations
are indicated by vertical lines connecting control and target qubit. A box specifying
the type of the controlled operation is placed on the line of the target qubit and a
dot is placed on the line of the control qubit. A solid (empty) dot indicates that the
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operation is applied to the target qubit if the control qubit is in the state |1〉 (|0〉).
Circuit diagrams are read from left to right and single-qubit gates placed vertically
below each other can be executed simultaneously.

The sample circuit shown in Equation (2.108) represents the following quantum
algorithm: The initial state of the quantum register is |q1q0〉 = |10〉. In a first step, a
NOT gate X̂ is applied to q0 and a Hadamard gate Ĥ is applied to q1. The next two
steps are two equivalent notations of a CNOT gate, where the control qubit is q0 and
the target qubit is q1. The solid dot indicates that the NOT gate is only applied if
q0 is in the state |1〉. Then, a T̂ gate is applied to q0, followed by a controlled Ẑ gate
where the target qubit is now q0 and the control qubit is q1. The empty dot indicates
that the Ẑ gate is applied only if q1 is in the state |0〉. Finally, both qubits are
measured in the eigenbasis of the Ẑ operator. This measurement collapses quantum
superpositions, i.e., the outputs are classical bits 0 or 1 for each measured quantum
bit. After the measurement, qubit q1 is reset to the state |0〉.

2.7.2 Quantum simulation

The term quantum simulation describes the task to calculate the time evolution of
a given quantum system Q by means of another quantum system S – the quantum
simulator [Feynman, 1982].

To calculate the time evolution of a large quantum system Q, one has to keep
track of an exponential number of degrees of freedom. This is inefficient on classical
hardware. However, if a quantum system S is used, its Hilbert space scales exponen-
tially with the size of S, too. Therefore, with a suitable mapping between the Hilbert
spaces HQ and HS of Q and S, respectively, the size of the simulator S grows only
polynomially with the size of Q, and the problem of exponentially increasing memory
resources is solved. Once the mapping between Q and S is fixed, one has to implement
the time evolution of Q on the quantum simulator. The following two options exist
to accomplish this task:

In analog quantum simulation, one chooses a quantum simulator whose Hamilto-
nian ĤS and dissipative dynamics have the same form as the Hamiltonian ĤQ and the
dissipative dynamics of Q, respectively. An example of this approach is the quantum
simulation of a Bose-Hubbard Hamiltonian using a lattice of cold atoms [Jaksch et al.,
1998; Greiner et al., 2002]: Overlapping laser beams create an optical lattice that can
be used to trap cold atoms. Atoms can tunnel through the potential wells separating
the different lattice sites, which corresponds to a hopping process from one site of the
Bose-Hubbard Hamiltonian to another one. The shape of the optical lattice can be
modified by tuning the lasers, such that different parameters of the Hamiltonian ĤQ

can be simulated. By initializing a certain distribution of atoms in the lattice and
measuring their dynamics as a function of time, one can study the time evolution of Q.
Analog quantum simulators are typically restricted to a certain class of Hamiltonians
ĤQ and a certain range of experimentally feasible parameters.

In digital quantum simulation, the quantum simulator S is a universal quantum
computer. At first sight, a problem may arise because the quantum computer usu-
ally does not provide gates that directly implement the desired time evolution of Q.
However, this problem can be solved by discretizing the time axis such that the state
of the quantum simulator encodes the state of Q at integer multiples of a small time
step dt. These states are linked by a time evolution operator Û(dt), which can be ap-
proximated by a quantum circuit to arbitrary precision since the quantum computer
provides a universal set of quantum gates. Repeating the quantum circuit of a single
time step n times, the time evolution of Q can be simulated up to a desired final
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time T = ndt. Lloyd [1996] pointed out that the following two conditions must be
satisfied to ensure that a digital quantum simulation of the time evolution of Q over
the simulated time T is efficient:

1. The sequence of gates that implement the time evolution operator Û(dt) must
grow only polynomially with the system size M and

2. the total run time of the quantum simulation must grow only polynomially with
the simulated time T .

Both requirements can be satisfied if the Hamiltonian of the physical system has a
local structure i.e., if it can be decomposed in the form

Ĥ =

L(M)∑
j=1

Ĥj , (2.109)

where L(M) is a polynomial of M and each term Ĥj acts only on an mj-dimensional
subspace of HQ [Lloyd, 1996]. Luckily, the Hamiltonians of many physically relevant
systems have such a local form.

If the time step dt = T/n is sufficiently small, the exact time evolution generated
by the Hamiltonian ĤQ can be approximated by a series of short time evolutions
generated by the Hamiltonians Ĥj ,

e−iĤT/~ =
(
e−iĤ1dt/~e−iĤ2dt/~ . . . e−iĤLdt/~

)n
+O

(
T 2

n

)
. (2.110)

The number n of times steps required to simulate e−iĤT/~ to accuracy ε is

n = O
(
T 2

ε

)
. (2.111)

Each term e−iĤjdt/~ is a unitary transformation, represented by amj×mj matrix, that
can be specified by O(m2

j ) operations. Consequently, the total number of operations
to generate the time evolution e−iĤT/~ is

Nop = O

n L(M)∑
j=1

m2
j

 ≤ O [nL(M)m2
]
, (2.112)

where we introduced m = maxj{mj} [Lloyd, 1996]. The number of operations scales
polynomially in the system size M since we required that L(M) is a polynomial ofM .
Generating a single unitary transformation e−iĤjdt/~ on a quantum computer takes a
time

Top ∝
T

n
= O

( ε
T

)
. (2.113)

Combining Equations (2.111)–(2.113), we find that the total run time of the quan-
tum simulation scales linearly in T . Consequently, the time evolution under a local
Hamiltonian of the form (2.109) can be efficiently simulated on a quantum computer.

Equation (2.110) is an example of a so-called Suzuki-Trotter decomposition of the
unitary transformation e−iĤT/~ [Trotter, 1959; Suzuki, 1976]. These decompositions
provide a formal way to break a complicated unitary transformation down to more
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simple transformations that can be approximated by the quantum gates of a quantum
computer. Several Suzuki-Trotter decomposition formulas exist, which yield different
approximation errors in terms of the time step dt. Equation (2.110) corresponds to
the most simple decomposition scheme

ei(Â+B̂)dt = eiÂdteiB̂dt +O(dt2) .

To implement a digital quantum simulation of quantum synchronization in Chap-
ter 6, we will use a higher-order approximation that is obtained by symmetrizing the
expression on the right-hand side [Nielsen and Chuang, 2011],

ei(Â+B̂)dt = eiÂdt/2eiB̂dteiÂdt/2 +O(dt3) .

This decomposition is equivalent to a higher-order numerical integration algorithm for
an ordinary differential equation. It reduces the approximation error per time step at
the cost of increasing the number of quantum gates per time step.
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Chapter 3

Nonclassical States of Motion in an
Optomechanical Limit Cycle

The results presented in this chapter have been published in:

M. Koppenhöfer, C. Bruder, and N. Lörch,
Unraveling nonclassicality in the optomechanical instability,
Physical Review A 97, 063812 (2018).

3.1 Motivation

In recent years, optomechanical experiments have started to enter the quantum regime.
Sideband cooling of mechanical oscillations to the quantum ground state [Teufel et al.,
2011; Chan et al., 2011], sensing of mechanical motion at the standard quantum limit
[Teufel et al., 2009; Purdy et al., 2013; Schreppler et al., 2014], quantum state trans-
fer between the optical and mechanical subsystems [Verhagen et al., 2012; Palomaki
et al., 2013], and phonon lasing [Grudinin et al., 2010; Anetsberger et al., 2009; Cohen
et al., 2015] have been demonstrated. These experiments triggered an increased inter-
est in quantum effects in phonon lasing beyond the scope of the semiclassical theory
summarized in Section 2.4.2. Theoretical studies [Rodrigues and Armour, 2010; Qian
et al., 2012; Nation, 2013; Machado and Blanter, 2016] have led to the prediction
[Lörch et al., 2014] that the phonon distribution of such an optomechanical phonon
laser can be nonclassical if the system is operated in the resolved-sideband regime. In
this context, nonclassicality means a sub-Poissonian phonon-number statistics, quan-
tified by a Fano factor below unity. However, an experimental observation of this
nonclassicality is still missing.

Continuous measurements, such as homodyne detection or photon counting, can
provide information on the state of a quantum system [Wiseman and Milburn, 2009].
As discussed in Section 2.2, these measurements give rise to a conditional time evo-
lution since the state ρ̂(t) of the system at a given time t depends on the previous
measurement results. The measurement record can be used for real-time state recon-
struction, which has been experimentally demonstrated both in the regime of negligi-
ble optical backaction and in the quantum regime [Briant et al., 2003; Iwasawa et al.,
2013; Wieczorek et al., 2015]. In a second step, the knowledge of the system’s state
can be used to implement feedback mechanisms, e.g., to cool the motion of the system
[Mancini et al., 1998; Doherty and Jacobs, 1999; Hopkins et al., 2003; Wilson et al.,
2015], or to generate squeezed mechanical states of motion of a levitated nanosphere
by combining sideband cooling and Markovian feedback [Genoni et al., 2015].

https://dx.doi.org/10.1103/PhysRevA.97.063812


50 3. Nonclassical States of Motion in an Optomechanical Limit Cycle

Ω

Γ
κ

ωlaser, αlaser

LO

η

η

η

a

b

ωcav

−1

−0.5

0

0 5 10

c

Γ B
A
(B̃

)/
|Γ

B
A
(0
)|

B̃

Figure 3.1: Sketch of the considered setup. An optomechanical sys-
tem is monitored by a continuous measurement, either homodyne de-
tection (a) or photon counting (b). A blue-detuned laser drive is
applied to the optomechanical system to induce mechanical limit cy-
cles. (c) Optically induced damping ΓBA as a function of the rescaled
amplitude B̃ = 2g0B/Ωmech in the regime |∆| < Ωmech. This cor-
responds to a vertical cut through Figure 2.3 at a fixed value of the
detuning ∆. Limit-cycle amplitudes for the different parameter sets of
the mechanical damping considered in this project (cf. Table 3.1) are
indicated by solid markers. The colors and marker symbols correspond
to the ones of the data sets in Figure 3.2.

Whereas sideband cooling requires a laser drive below the resonance frequency
of the optical cavity, we now consider the opposite limit of a laser drive above reso-
nance, which induces mechanical limit-cycle motion. We investigate the impact of a
continuous measurement on phonon lasing, with a focus on the nonclassicality of the
mechanical state, quantified by its Fano factor. Our results show that a continuous
measurement of the output field of the optical cavity can be used to induce nonclas-
sical states of mechanical motion by reducing the mechanical amplitude fluctuations.
In contrast to existing proposals based on unconditional dynamics [Rodrigues and
Armour, 2010; Lörch et al., 2014], which require operation in the resolved-sideband
regime to observe nonclassical mechanical states, our approach opens the possibility to
generate nonclassical self-oscillations in the unresolved-sideband regime. This comes
at the cost of obtaining a time-dependent, stochastically fluctuating Fano factor be-
cause of the conditional dynamics of the optomechanical system. We characterize the
magnitude of these fluctuations and show that the conditional Fano factor can become
smaller than unity, notably even in the unresolved-sideband regime, where it has been
proven that the Fano factor in the case of unconditional dynamics is always larger
than unity [Lörch et al., 2014].

This chapter is structured as follows. The optomechanical system is introduced in
Section 3.2 and important properties are briefly reviewed. The methods and param-
eter regimes used to study the influence of continuous measurements on mechanical
limit-cycle motion are introduced in Section 3.3. Numerical results are presented in
Section 3.4 and subsequently discussed in Section 3.5. Finally, we conclude in Sec-
tion 3.6.

3.2 Optomechanical system

We consider an optomechanical system described by the standard optomechanical
Hamiltonian (2.56) and the quantum master equation (2.58),

d

dt
ρ̂ = − i

~

[
ĤOM, ρ̂

]
+ Γmech(nph + 1)D[b̂]ρ̂+ ΓmechnphD[b̂†]ρ̂+ κD[â]ρ̂ , (3.1)

ĤOM = −~∆â†â+ ~Ωmechb̂
†b̂− ~g0â

†â
(
b̂† + b̂

)
+ ~αlaser

(
â† + â

)
, (3.2)
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where â and b̂ are the bosonic annihilation operators of an optical photon and a
mechanical phonon, respectively, and

∆ = ωlaser − ωcav (3.3)

is the detuning between the laser and the cavity as introduced in Equation (2.57). The
mechanical frequency is denoted by Ωmech, g0 is the bare optomechanical coupling
strength, and αlaser is the complex amplitude of the laser driving the cavity. The
Lindblad dissipators D are defined in Equation (2.12). The mechanical and optical
damping rates and the thermal phonon number are denoted by Γmech, κ, and nph,
respectively. A continuous measurement, i.e., photon counting or homodyne detection
of the optical quadrature

âeiϕ + â†e−iϕ , (3.4)

is performed on the output port of the optical cavity, as shown in Figures 3.1(a) and
(b), respectively. The measured optical quadrature can be selected by adjusting the
relative phase ϕ between the local oscillator (LO) and the laser driving the optical
cavity. In an experiment, some photons will not be detected because of absorption
or scattering on their way to the detector and because of imperfections of the photon
detection process. Therefore, we assume that the continuous measurement has an
overall detection efficiency 0 ≤ η ≤ 1. We will discuss in Section 3.3 how to simulate
imperfect photon detection.

To drive the optomechanical system into mechanical limit-cycle motion, we assume
that a laser drive above resonance is applied to the optical cavity, αlaser > 0 and ∆ > 0.
As derived in Section 2.4.2, the mechanical motion can be described in a semiclassical
approximation by [Rodrigues and Armour, 2010; Marquardt et al., 2006]

〈b〉 = βss +Bsse
−i[(Ωmech+δΩss)t+φ] , (3.5)

where Bss is the steady-state amplitude of the limit-cycle motion and the complex
quantity βss describes a constant offset. Both quantities are implicitly defined by
Equations (2.72a) and (2.72b): At the mechanical steady-state amplitude Bss, the
negative optical backaction damping at the rate ΓBA defined in Equation (2.70) is
compensated by the intrinsic mechanical damping at the rate Γmech, as sketched in
Figure 3.1(c). The coupling to the optical cavity also introduces a renormalization
δΩss of the mechanical resonance frequency, which has been defined in Equation (2.71).

The optical backaction damping introduces a characteristic relaxation rate Γrel at
which an initial mechanical amplitude B(0) decays towards the steady-state amplitude
Bss. To derive this rate, we consider a small amplitude fluctuation B(t) = Bss +δB(t),
where |δB(t)| � Bss. Equation (2.72a) implies that an amplitude fluctuation δB
introduces a change of the mechanical offset β of the order of g0/Ωmech. Since we
are working in the weak-coupling limit g0 � Ωmech, we ignore this correction in the
derivation of the amplitude relaxation rate. A Taylor expansion of Equation (2.68b)
in in terms of δB yields

d

dt
δB(t) = −Γrel

2
δB(t) .

Thus, after a small perturbation δB(0), the mechanical amplitude relaxes exponen-
tially towards its steady-state value,

δB(t) = δB(0)e−Γrelt/2 .
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The amplitude relaxation rate is given by

Γrel = B
∂ΓBA

∂B

∣∣∣∣
Bss

= Γmech − 2g2
0κ |αlaser|2

∞∑
k=−∞

J ′k+1(B̃ss)Jk(B̃ss) + Jk+1(B̃ss)J
′
k(B̃ss)

|gk+1|2 |gk|2
, (3.6)

where B̃ss = 2g0Bss/Ωmech. The terms gk in the denominator are defined in Equa-
tion (2.67) and Jk(x) denotes the k-th Bessel function of the first kind.

3.3 Methods and parameters

Motivated by previous theoretical investigations [Rodrigues and Armour, 2010; Qian
et al., 2012; Nation, 2013; Lörch et al., 2014], we will use the mechanical Fano fac-
tor (2.74) to quantify the nonclassicality of the mechanical limit-cycle oscillation,

F =
〈(b̂†b̂)2〉 − 〈b̂†b̂〉2

〈b̂†b̂〉
.

As discussed in Section 2.4.2, a Fano factor below unity indicates nonclassical me-
chanical states. In the following, we will compare the Fano factor of three different
quantities:

1. The instantaneous Fano factor F (t) of the stochastic quantum state ρ̂(t) along
a quantum trajectory,

2. its ensemble average

Fcond = E[F (t)] , (3.7)

which is time-independent after some initial transient dynamics and can be inter-
preted as the Fano factor of a time-averaged mechanical state along a quantum
trajectory (cf. Section 3.5), and

3. the steady-state Fano factor Fss associated with the unconditional steady-state
solution ρ̂ss of the QME (3.1).

The parameters of our numerical study are determined as follows. We will concen-
trate most of the time on the experimentally relevant weak-coupling limit g0 � Ωmech.
As for the mechanical damping rate Γmech, we will consider three different parameter
regimes which are schematically represented in Figure 3.1(c) by horizontal lines:

(i) Negligible mechanical damping (solid red line). In this case, the theory devel-
oped by Lörch et al. [2014] is directly applicable. Furthermore, a measurement
at perfect detection efficiency, η = 1, evolves the system into a pure state. Since
the backaction damping ΓBA oscillates around zero, mechanical limit-cycle mo-
tion is possible at each positively-sloped root of ΓBA.

The potential amplitudes of limit-cycle motion are separated by regions of pos-
itive backaction damping, whose maximum value decreases if the cavity decay
rate κ is increased. Quantum fluctuations may drive the system across these
regions of positive backaction damping. Therefore, for increasing κ, the me-
chanical amplitude can show multistability between several limit cycles or it
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may even become unstable such that there is no limit cycle at all. As a con-
sequence, all parameters considered in this work are in the resolved-sideband
regime if the mechanical damping rate is set to zero.

(ii) A nonzero mechanical damping that is small compared to the value of the back-
action damping |ΓBA(0)| at zero mechanical amplitude, but large enough such
that there is a unique limit cycle (dashed blue line). Here, we will investigate
cavity decay rates κ beyond the resolved-sideband regime.

The two parameter regimes introduced so far are advantageous for numerical simu-
lations, since, for an appropriate choice of g0, we can avoid multistability by widely
separating the limit cycle amplitudes in Fock space, whereas the fluctuations in the
phonon number b̂†b̂ are still sufficiently small to allow us to restrict the Hilbert space
dimension to a numerically feasible value. However, current optomechanical limit-
cycle experiments operate at very small values of g0/κ, the ratio κ/Ωmech can be
smaller than one, but the cooperativity (2.61) is not much larger than unity. There-
fore, the limit-cycle amplitude is situated in the parabolic region of the curve of
ΓBA(B̃) in experiments [Cohen et al., 2015].

(iii) To provide a result in a parameter regime corresponding to typical experiments,
we also investigate a mechanical damping of the order of |ΓBA(0)| [dotted green
line in Figure 3.1(c)]. Since the limit-cycle amplitude and the required Hilbert-
space dimension scale inversely proportional to the bare optomechanical coupling
strength g0, choosing too small values for the coupling strength g0 is numeri-
cally not feasible. Therefore, we will increase the value of g0 compared to typical
experimental values to be able to restrict the Hilbert-space dimension to a nu-
merically tractable value, but we keep the limit-cycle amplitude in the parabolic
regime of ΓBA(B̃).

The strength of amplitude fluctuations around the limit-cycle amplitude depends
on the mechanical damping rate Γmech, the thermal phonon number nph, and the drive
power |αlaser|2 [Lörch et al., 2014]. Therefore, we choose to keep these three parameters
fixed while changing the cavity decay rate κ. Since the backaction damping ΓBA

depends on the cavity decay rate κ, too, the optomechanical limit-cycle may become
unstable for too large values of κ. We choose the constant laser drive αlaser such
that the limit cycle is stable over the entire range of considered cavity decay rates.
To determine the value of the detuning ∆, we exploit the fact that the steady-state
mechanical Fano factor Fss has several local minima as a function of the detuning
[Lörch et al., 2014]. For fixed values of Γmech, nph, g0, αlaser, and κ, we choose the
smallest positive detuning ∆ such that the mechanical motion is stable and the steady-
state Fano factor Fss is locally minimal. An overview of the numerical parameters
obtained by this procedure is given in Table 3.1. For specific parameter sets, we also
investigate the impact of inefficient detection, η < 1, of finite mechanical temperature
nph > 0, and of the bare optomechanical coupling strength g0.

Under the assumption of a perfect photodetection process, stochastic differential
equations for photon counting and homodyne detection have been derived in Sec-
tions 2.2.2 and 2.2.3, respectively. The resulting SMEs (2.25) and (2.36) turn out
to be useful to study the more realistic case of an imperfect photon detection pro-
cess, too, since the case of imperfect photodetection can actually be mapped onto a
modified continuous measurement with perfect photodetection. To model imperfect
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Table 3.1: Numerical parameters used to investigate the three dif-
ferent parameter regimes introduced in Section 3.3. A minus sign in
the regime (i) indicates that there is no stable limit cycle for the given
value of the cavity decay rate κ.

κ/Ωmech 0.1 0.5 1.0 1.5 2.0 2.5 3.0
parameter regime (i), •

g0/Ωmech 0.16 ∆/Ωmech 0.05 0.21 0.37 − − − −
Γmech/Ωmech 0 ϕopt/π 0.0 0.0 0.9 − − − −
αlaser/Ωmech 0.35 Bss 7.5 7.6 8.0 − − − −

nph 0 〈n〉ss 55.5 57.7 64.7 − − − −

parameter regime (ii), �
g0/Ωmech 0.36 ∆/Ωmech 0.00 0.15 0.27 0.36 1.44 1.22 0.74

Γmech/Ωmech 0.00125 ϕopt/π 0.0 0.9 0.8 0.6 0.4 0.3 0.3
αlaser/Ωmech 0.3 Bss 3.2 3.2 3.2 3.2 4.6 3.8 2.6

nph 0 〈n〉ss 9.4 10.3 11.3 11.8 22.2 15.3 8.0

parameter regime (iii), N
g0/Ωmech 0.16 ∆/Ωmech 0.05

Γmech/Ωmech 0.0006 ϕopt/π 0.15
αlaser/Ωmech 0.1 Bss 3.2

nph 0 〈n〉ss 10.8

photodetection, we split the cavity damping term into two Lindblad dissipators,

D[â]ρ̂ = ηD[â]ρ̂+ (1− η)D[â]ρ̂

= D[
√
ηâ]ρ̂+D[

√
1− ηâ]ρ̂ , (3.8)

where the first dissipative operator √ηâ is now considered to describe a perfectly
monitored dissipative channel whereas the second operator

√
1− ηâ is treated as an

unmonitored dissipative process. Combining Equations (3.1) and (3.8), we obtain a
QME of the form (2.19) if we define the Lindblad operators ô and ûj as follows:

ô =
√
κηâ , û2 =

√
Γmech(nph + 1)b̂ ,

û1 =
√
κ(1− η)â , û3 =

√
Γmechnphb̂

† . (3.9)

With these definitions, we can use the SMEs (2.25) and (2.36) to simulate photon
counting and homodyne detection, respectively, for any value 0 ≤ η ≤ 1 of the overall
detection efficiency.

The eigenvalues of the deterministic part of the stochastic differential equations
have a large imaginary component, such that explicit integration algorithms are un-
stable even for relatively small time steps. Therefore, we use a semi-implicit Milstein
algorithm, which is implicit with respect to the deterministic part of the time evo-
lution [Kloeden and Platen, 1995], to integrate the stochastic differential equation in
the case of homodyne detection. This algorithm has already been implemented in the
QuTiP package [Johansson et al., 2012], which is used for all numerical calculations
in this project. To solve the stochastic differential equation for photon counting, we
implemented a fourth-order implicit Runge-Kutta algorithm [Rannacher, 2014].

As discussed in Section 2.2, the unconditional dynamics of the optomechani-
cal system can be recovered from the stochastic unraveling by an ensemble-average
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over many quantum trajectories. Hence, observables of the system do not change
their average value in the presence of continuous measurements. For instance, the
ensemble-averaged phonon-number expectation value E[〈b̂†b̂〉] reproduces the uncon-
ditional steady-state phonon-number expectation value 〈b̂†b̂〉ss after some initial tran-
sient time. However, the continuous measurement leads to a purification of the state
[Wiseman and Milburn, 2009], i.e., if the system is initialized in a non-pure initial
state ρ̂(0), a continuous measurement will increase its purity and the von Neumann
entropy

SvN(t) = −kBTr [ρ̂(t) ln ρ̂(t)] (3.10)

will decrease. Here, kB denotes the Boltzmann constant. Likewise, the ensemble-
average of functions of observables, such as the conditional mechanical Fano factor
Fcond, may have different values than the corresponding steady-state result Fss.

3.4 Nonclassical mechanical limit-cycle motion

Figures 3.2(a)–(c) show the phonon-number expectation value 〈b̂†b̂〉(t), the von Neu-
mann entropy SvN(t), and the Fano factor F (t) for a single quantum trajectory
obtained by homodyne detection, as well as their ensemble-averaged mean values
E[〈b̂†b̂〉(t)], E[SvN(t)], and E[F (t)]. The system is initialized in the steady-state so-
lution ρ̂ss of the QME (3.1) at times t < 0. At time t = 0, homodyne detection is
switched on and 〈b̂†b̂〉, SvN, and F evolve stochastically. As expected, homodyne de-
tection does not change the mean phonon-number expectation value E[〈b̂†b̂〉(t)], but
our increasing knowledge of the system state causes the mean von Neumann entropy
E[SvN(t)] and the mean Fano factor E[F (t)] to decrease. Empirically, an exponen-
tial decay towards new conditional mean values is found, with a decay rate that is
approximately twice the amplitude relaxation rate (3.6),

E[SvN(t)] ≈ (Sss − Scond)e−2Γrelt + Scond , (3.11)

E[F (t)] ≈ (Fss − Fcond)e−2Γrelt + Fcond . (3.12)

The residual value Scond for times t� 1/Γrel depends on the strength of the remaining
dissipative channels of the system. For zero mechanical damping and perfect detection,
there is no unmonitored dissipative interaction and the system evolves into a pure
entangled state, having zero von Neumann entropy. In the case of nonzero mechanical
damping, shown here, or for imperfect detection efficiency, there is an additional
unmonitored decay channel such that the system evolves into a mixed state, having
nonzero von Neumann entropy, Scond & 0.

In the case of homodyne detection, the ensemble-averaged Fano factor Fcond de-
pends on the measured optical quadrature, i.e., it is a function of the homodyne angle
ϕ. Note that ϕ and ϕ+ π effectively measure the same quadrature. In the following,
all homodyne detection data is given at the optimal angle ϕopt that minimizes Fcond.
The numerical values of ϕopt are given in Table 3.1.

The instantaneous Fano factor F (t) fluctuates around its ensemble average Fcond.
To quantify these fluctuations for long times t � 1/Γrel, we calculate a histogram
p(F ) of the instantaneous Fano factor F (t) over many trajectories, which is shown in
Figure 3.2(e). In the following, we will quantify the properties of this histogram by
three numbers, namely,

(i) its mean value, the Fano factor Fcond,
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Figure 3.2: Evolution of (a) the phonon-number expectation value
〈b̂†b̂〉, (b) the von Neumann entropy SvN, and (c) the Fano factor F
under homodyne detection for a single trajectory (solid blue curves).
The corresponding ensemble averages over 30 trajectories are shown
as solid red curves, and the theoretical expectations in the limit of an
average over infinitely many trajectories, Equations (3.11) and (3.12),
respectively, are shown as dashed orange curves. At times t < 0 the
system is assumed to be in its steady state, homodyne detection is
switched on at t = 0. (d) Wigner function of the mechanical state
in a frame rotating at Ωmech at two different times indicated by green
markers on the trajectories. The zero-point fluctuations are defined
by xzpf =

√
~/2mΩmech and pzpf =

√
~mΩmech/2, where m denotes

the effective mechanical mass, cf. Appendix A.1. (e) Distribution of
the Fano factor for times larger than the data-acquisition start time
indicated by the dotted black line in (c). The data includes all 30 tra-
jectories. The blue bars of the histogram comprise at least 70 % of
the total probability. Parameters are the values in Table 3.1 that are
highlighted in boldface type and η = 1.

(ii) the probability p(F < Fss) to obtain a Fano factor smaller than the steady-state
value Fss, and

(iii) the range of values of the Fano factor that contains at least 70 % of the to-
tal probability. This range is indicated by blue bars in the histogram and can
be asymmetrically distributed around the mean value Fcond in the resolved-
sideband regime. To determine this range, we calculate the cumulative distri-
bution function of the histogram and exclude all bins that have a value smaller
than 15 % or larger than 85 %.

For the parameters used in Figure 3.2, the conditional Fano factor is found to be
smaller than the steady-state value, Fcond < Fss. Using the three figures of merit
of the histogram introduced above, we now investigate this reduction of the Fano
factor Fcond for different optical damping rates κ, for different types of continuous
measurements, and for mechanical damping rates Γmech in the three different regimes
introduced in Section 3.3.

Our results are summarized in Figure 3.3. As predicted by Rodrigues and Armour
[2010] and Lörch et al. [2014], the steady-state Fano factor Fss is smaller than unity



3.4. Nonclassical mechanical limit-cycle motion 57

0

1

2

3

a

0.8

1

0 1 2 3

b

1
1.5

c

0.8
1

0.25 0.5 0.75 1
F

p
(F

<
F
ss
)

κ/Ωmech

F
p

η

Figure 3.3: (a) Mean conditional Fano factor Fcond (solid mark-
ers), steady-state Fano factor Fss (open markers) and (b) probability
p(F < Fss) to observe a Fano factor smaller than Fss. Red circles
and dashed lines correspond to homodyne detection and zero mechan-
ical damping [regime (i)]. Blue squares and solid lines correspond to
homodyne detection and a mechanical damping small compared to
|ΓBA(0)| [regime (ii)]. Green triangles represent the case of homodyne
detection and a mechanical damping rate large compared to |ΓBA(0)|
[regime (iii)]. The black crosses adjacent to the results for homodyne
detection indicate the corresponding results for photon counting. The
shaded regions and error bars represent the ranges of Fano factors that
contain at least 70 % of all counts. All curves are calculated at perfect
detection efficiency, η = 1, with the parameters given in Table 3.1. (c)
Influence of imperfect detection, η < 1, for the parameters highlighted
in boldface type in Table 3.1.

in the resolved-sideband regime κ� Ωmech at zero mechanical damping. This predic-
tion still holds for small mechanical damping, but is not applicable for a mechanical
damping of the order of |ΓBA(0)|. If κ is increased towards the unresolved-sideband
regime κ > Ωmech, the steady-state Fano factor grows and takes values much larger
than unity.

Whereas the conditional mechanical Fano factor Fcond increases with κ in the
resolved-sideband regime, too, it saturates to a value of the order of unity in the
unresolved-sideband regime. In the resolved-sideband regime, Fcond depends only
weakly on the homodyne angle ϕ and homodyne detection and photon counting yield
the same results within the statistical errors. Towards the unresolved-sideband regime
or for large mechanical damping, however, the choice of an optimal homodyne angle
ϕopt allows one to reach smaller values of Fcond than for photon counting. The op-
timal homodyne angle is the one for which the measured optical quadrature, whose
semiclassical dynamics is given by Equation (2.65), has the shortest period time and
is closest to a harmonic oscillation.

Figure 3.3(a) shows that homodyne detection and photon counting measurements
decrease the conditional Fano factor Fcond with respect to Fss for all considered val-
ues of Γmech and κ. Since Fcond is bounded in the unresolved-sideband regime but
Fss increases with κ, the probability p(F < Fss) to observe a Fano factor smaller
than the steady-state Fano factor in a continuous measurement increases towards the
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Figure 3.4: Influence of the optomechanical single-photon cou-
pling strength g0 on Fss, Fcond, and p(F < Fss). Filled blue
squares indicate the results for homodyne detection, black crosses
the ones for photon counting. The steady-state Fano factor Fss is
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mech

is kept constant. Parameters are κ/Ωmech = 1.5, Γ/Ωmech =
0.005, g0/Ωmech = (0.144, 0.18, 0.24, 0.36, 0.72), αlaser/Ωmech =
(0.75, 0.60, 0.45, 0.30, 0.15), ∆/Ωmech = (0.61, 0.58, 0.55, 0.44, 0.07),
nph = 0, and ϕopt/π = (0.4, 0.3, 0.3, 0.2, 0.6). The correspond-
ing values of 〈n〉ss and Bss are 〈n〉ss = (43.8, 28.8, 15.6, 7.0, 2.0) and
Bss = (6.8, 5.4, 4.0, 2.5, 0.3).

unresolved-sideband regime and approaches unity, as shown in Figure 3.3(b).
Figure 3.3(c) shows the influence of the detection efficiency η on Fss, Fcond, and

p(F < Fss) for a fixed ratio κ/Ωmech = 1.5. The smaller the detection efficiency the
less information can be gained out of the continuous measurement. Therefore, Fcond

tends towards the steady-state value Fss for low detection efficiency.
In Figure 3.4, we investigate the influence of the optomechanical single-photon

coupling strength g0 on the reduction of the Fano factor. In the weak-coupling limit
g0 � Ω, the steady-state Fano factor is expected to be only a function of g0 |αlaser|
[Lörch et al., 2014]. Therefore, to obtain comparable results, we rescale both |αlaser|
and g0 at a time such that their product g0 |αlaser| is kept constant. The graph of
Fss in Figure 3.4 confirms this prediction. The mean Fano factor Fcond increases
with the optomechanical coupling strength and approaches the steady-state value Fss.
Likewise, the probability p(F < Fss) decreases.

Finally, Figure 3.5 shows the influence of the mechanical temperature, expressed
in terms of the thermal phonon number nph, on the reduction of the Fano factor.
A reduction of Fcond compard to Fss is observed for all considered temperatures.
However, in order to observe a nonclassical Fano factor Fcond < 1, a small effective
thermal occupation number nph . 1 is required.

3.5 Discussion and experimental implementation

The numerical results shown in Figure 3.3 indicate that a continuous measurement of
the cavity output of an optomechanical system decreases the mean mechanical Fano
factor Fcond compared to the steady-state value Fss obtained in the absence of a contin-
uous measurement. The difference Fss − Fcond is particularly large in the unresolved-
sideband regime and for a mechanical damping close to |ΓBA(0)|. For parameters
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Figure 3.5: Influence of the mechanical temperature, expressed
in terms of the thermal phonon number nph, on Fss, Fcond, and
p(F < Fss). Filled blue squares indicate the results for homo-
dyne detection, black crosses the ones for photon counting. The
steady-state Fano factor Fss is shown in open blue squares. Pa-
rameters are κ/Ωmech = 1.5, Γ/Ωmech = 0.00125, g0/Ωmech = 0.36,
αlaser/Ωmech = 0.3, ∆/Ωmech = (0.36, 0.36, 0.36, 0.35, 0.34, 0.34, 0.33),
and ϕopt/π = 0.6. The corresponding values of 〈n〉ss and Bss are
〈n〉ss = (11.8, 11.8, 11.8, 11.8, 11.8, 11.9, 12.1) and Bss = 3.2.

similar to the ones realized in current experiments (cf. green triangles in Figure 3.3),
a large steady-state Fano factor Fss > 3 is strongly reduced to Fcond < 1 and a nonclas-
sical state is observed with probability one. A similar but less pronounced reduction
effect is observed in the resolved-sideband regime. In the unresolved-sideband regime,
photon-counting reduces the Fano factor from a steady-state value much larger than
unity to a mean value Fcond close to unity. Homodyne detection allows one to decrease
Fcond even further by optimizing the homodyne angle ϕ. By this means, a nonclassical
mean Fano factor Fcond < 1 can be achieved even in the unresolved-sideband regime.

These numerical results can be qualitatively understood as follows. The measure-
ment record allows one to distinguish mechanical states obtained in different quantum
trajectories, which are indistinguishable in the case of unconditional dynamics, as dis-
cussed in Section 2.2.6. The instantaneous mechanical state has a lower uncertainty
in amplitude and phase than the mechanical steady state because the steady state
represents an ensemble average over many quantum trajectories. To discuss the im-
pact of a continuous measurement on the Fano factor, it is sufficient to focus on the
amplitude dynamics, i.e., the phonon-number distribution of the mechanical states.
The phonon-number distribution pss(n) of the steady state is given by an ensem-
ble average over mechanical states j = 1, 2, . . . at different amplitudes nj = 〈b̂†b̂〉j .
Each of those mechanical states has a photon-number distribution p

(j)
bare(n) that is

narrower than pss(n), as sketched in Figure 3.6. The steady-state Fano factor Fss is
determined by pss, the fluctuating Fano factor F (t) along the quantum trajectory j is
determined by p(j)

bare, and the average conditional Fano factor Fcond is determined by
the ensemble-averaged properties of the set of distributions {p(j)

bare}.
To derive a minimal model for the properties of Fcond, we define the ensemble-

averaged phonon-number distribution

pbare(n) = E
[
p

(j)
bare(n+ nj)

]
,
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Figure 3.6: A physical argument why a continuous measurement
causes a reduction of the Fano factor. The steady-state phonon dis-
tribution pss(n) (top) is an ensemble average over many different me-
chanical states j, each described by a phonon distribution p

(j)
bare(n)

centered around a mean phonon number nj (bottom). The phonon
number nj fluctuates around the steady-state value according to the
distribution pfluc(n) (gray area in the lower plot). A continuous mea-
surement tracks the diffusive evolution of nj and gives access to the
phonon distributions p(j)

bare(n), which have a smaller Fano factor than
the steady-state phonon distribution.

which is a zero-mean distribution. The continuous measurement of the optical cavity
allows us to infer the state of the mechanical subsystem and to track the amplitude
〈b̂†b̂〉(t) of the mechanical state, which is distributed according to the distribution
pfluc(n). In line with our numerical parameters shown in Table 3.1, we assume that
both pbare and pfluc are narrow distributions in the following sense:√

〈n2〉bare � 〈n〉ss , (3.13)√
〈n2〉fluc − 〈n〉

2
fluc < 〈n〉fluc . (3.14)

These conditions imply that pbare and pfluc are peaked at n ≈ 0 and n ≈ 〈n〉fluc,
respectively, and decay to zero elsewhere. Therefore, we can extend their range of
definition to the entire real line, n ∈ (−∞,∞). Moreover, these conditions implicitly
contain the assumption that the shape of the individual distributions p(j)

bare(n) for large
steady-state amplitudes 〈n〉ss is almost independent of the instantaneous amplitude nj
and can be approximated by a generic distribution pbare(n). The steady-state phonon
distribution is then given by a convolution of the two distributions,

pss(n) =

∫ ∞
0

dn′ pfluc(n
′)pbare(n− n′) . (3.15)

Using the fact that pbare has zero mean, we find 〈n〉ss = 〈n〉fluc and

Fss =
〈n2〉fluc − 〈n〉2fluc

〈n〉fluc

+
〈n2〉bare

〈n〉fluc

. (3.16)

If the continuous measurement indicates that the mechanical amplitude of the instan-
taneous state ρ̂(t) is n′, the conditional phonon-number distribution of this state is



3.5. Discussion and experimental implementation 61

on average given by

pbare|n′(n) = pbare(n− n′)

and the corresponding instantaneous Fano factor is F (t|n′) = 〈n2〉bare/n
′. Taking the

average over the fluctuating amplitude, we find

Fcond =

〈
1

n

〉
fluc

〈n2〉bare . (3.17)

Comparing Equations (3.16) and (3.17), we find the relation

Fss = Ffluc + Fcond + 〈n2〉bare

[
1

〈n〉fluc

−
〈

1

n

〉
fluc

]
= Ffluc + Fcond +O

[
〈n2〉bare

〈n〉ss

]
, (3.18)

where Ffluc denotes the Fano factor of the distribution pfluc of the mechanical ampli-
tude. The correction term on the right-hand side is negligible in the limit of a large
phonon-number expectation value 〈nss〉. Thus, the steady-state Fano factor is the
sum of the conditional Fano factor of the mechanical states, which is resolved by a
continuous measurement, and the Fano factor of the fluctuations of the phonon num-
ber 〈b̂†b̂〉, which smear out the phonon-number distribution to the broad steady-state
distribution obtained in the case of unconditional dynamics. This analytical result
is well confirmed by our numerics and is the generalization of the decomposition of
observables discussed in Section 2.2.6 to the mechanical Fano factor.

It is reasonable that imperfect photon detection reduces the impact of the contin-
uous measurement such that Fcond tends towards Fss in the limit η → 0, as shown in
Figure 3.3(c). If all knowledge of the measurement is discarded, η → 0, the continu-
ous measurement is effectively absent, i.e., ô → 0 and û1 →

√
κâ. In this limit, the

SME reproduces the unconditional QME (3.1) and the mechanical state ρ̂(t) along
each quantum trajectory is identical to ρ̂ss. However, note that even for a moderate
detection efficiency of 50 %, a continuous measurement still reduces the Fano factor
by about 25 %.

Figure 3.4 shows that the conditional Fano factor Fcond tends towards the steady-
state value Fss if the weak-coupling regime g0 � Ωmech is left. Since we keep the
product g0 |αlaser| fixed, the drive strength |αlaser| decreases if the bare optomechani-
cal coupling strength g0 grows. Thus, the mean value 〈n〉fluc of the distribution pfluc

is shifted to smaller phonon numbers and the variance of pfluc decreases. Conse-
quently, the broadening effect of the convolution (3.15) on pss is reduced such that
Ffluct decreases and Fcond approaches Fss. Interestingly, despite the fact that the con-
ditions (3.13) and (3.14) are violated, numerically the decomposition (3.18) of the
steady-state Fano factor Fss is still found to be correct.

Finally, Figure 3.5 indicates that the reduction of Fcond with respect to Fss is
present at all considered temperatures of the mechanical environment. However, to
observe a nonclassical Fano factor Fcond < 1 for the parameters considered here, a
small thermal phonon occupation nph . 1 is required. Therefore, cryogenic temper-
atures or a precooling of the mechanics, e.g., using optomechanical cooling [Teufel
et al., 2011; Chan et al., 2011], are necessary. We stress that nph refers to an effective
bath occupation number of such a combined mechanical and optical bath.

Continuous measurements of optomechanical limit cycles are experimentally feasi-
ble with current technology. Optical homodyne detection on optomechanical systems
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is routinely done in experiments [Briant et al., 2003; Iwasawa et al., 2013; Wiec-
zorek et al., 2015]. The same holds for the realization of optomechanical limit cycles
[Anetsberger et al., 2009; Grudinin et al., 2010; Zhang et al., 2012; Bagheri et al.,
2013; Cohen et al., 2015]. To detect a sub-Poissonian mechanical state, optomechan-
ical state-reconstruction techniques applicable to both the resolved-sideband and the
unresolved-sideband regime are required. A proposal for state-reconstruction in the
unresolved-sideband regime has been published recently [Shahandeh and Ringbauer,
2019]. In the resolved-sideband regime, several schemes are established and could be
adapted to this setup [Vanner et al., 2015]. For state-reconstruction schemes based on
an optomechanical state transfer of the mechanical state to the optical cavity followed
by an optical tomography [Verhagen et al., 2012], it could be beneficial to add an
auxiliary readout cavity to the system. The properties of the mechanical amplitude
fluctuations could potentially even be characterized by the photon-counting measure-
ment itself using the measurement scheme demonstrated by Cohen et al. [2015]. Hence,
the effect discussed here could already be verified in the resolved-sideband regime with
state-of-the-art experimental techniques and there is a theoretical proposal on how to
proceed in the case of the unresolved-sideband regime.

3.6 Summary

In this project, we numerically analyzed how homodyne and photon counting measure-
ments of the optical cavity output decrease the mean mechanical Fano factor Fcond of
an optomechanical system below its steady-state value Fss. In the resolved-sideband
regime at small mechanical damping, the steady-state limit cycle is already nonclas-
sical, Fss < 1, such that the gain of nonclassicality due to a continuous measurement
is small. However, in the unresolved-sideband regime, the mean Fano factor Fcond

is drastically reduced compared to Fss and the system is found in a nonclassical me-
chanical state for a macroscopic fraction of the observation time. In particular for the
parameter regime inspired by typical experimental setups, we observe a large decrease
of the mechanical Fano factor. The reduction of the Fano factor is robust against
imperfect photon detection and finite temperature of the mechanical environment.
However, to observe nonclassical mechanical states, a low effective thermal phonon
number nph is necessary.

In conclusion, optical continuous measurements are a promising way to reduce
amplitude fluctuations of the mechanical subsystem not only in the limit of cooling
[Mancini et al., 1998; Doherty and Jacobs, 1999; Hopkins et al., 2003; Wilson et al.,
2015], but also for optomechanical limit cycles. This opens a route to the creation of
nonclassical mechanical states in a new parameter range, namely, outside the resolved-
sideband regime.

The results and figures presented in this chapter have been published in parts in
[Koppenhöfer et al., 2018].
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Chapter 4

Heralded Dissipative Generation of
Nonclassical States in Nonlinear
Systems

The results presented in this chapter have been published in:

M. Koppenhöfer, C. Bruder, and N. Lörch,
Heralded dissipative preparation of nonclassical states in a Kerr oscillator,
Physical Review Research 2, 013071 (2020).

4.1 Motivation

Nonlinearity is a crucial prerequisite for quantum algorithms to outperform their clas-
sical counterparts in quantum information processing because it gives rise to states or
operations that cannot be efficiently described in a classical framework [Nielsen and
Chuang, 2011]. An important property to evaluate the usefulness of a quantum state in
this context is the occurrence of negative values in its Wigner phase-space quasiprob-
ability distribution [Veitch et al., 2012; Stahlke, 2014; Rahimi-Keshari et al., 2016].
However, such nonclassical states are challenging to prepare and stabilize because of
unavoidable decoherence due to interaction with an unmonitored environment. For
example, the perhaps simplest nonlinear quantum system, a driven and damped quan-
tum oscillator with a Kerr nonlinearity, has a steady-state Wigner function that is
strictly positive [Kheruntsyan et al., 1996; Kheruntsyan, 1999; Bartolo et al., 2016].

Here, we circumvent this restriction and quantify the potential of such a system to
stabilize nonclassical states with negative Wigner density. We consider setups where a
detector continuously monitors the emitted photons. Such information leaking out of
the system has already been useful in the context of entanglement generation [Cabrillo
et al., 1999; Plenio et al., 1999; Nha and Carmichael, 2004; Carvalho et al., 2007;
Viviescas et al., 2010], teleportation [Bose et al., 1999], cooling [Mancini et al., 1998;
Doherty and Jacobs, 1999; Hopkins et al., 2003; Wilson et al., 2015], and nonclassical
optomechanical limit cycles [Koppenhöfer et al., 2018], since the continuous observa-
tion modifies the system’s dynamics. In general, the states of the system during a
continuous monitoring can have negative Wigner densities, but they fluctuate stochas-
tically and feedback protocols are necessary to stabilize a particular state [Minganti
et al., 2016]. Here, we demonstrate that quantum trajectories can continuously relax
to deterministic states whose presence is revealed by the detection signal. This mecha-
nism opens a new alternative path in heralded quantum state preparation and allows

https://dx.doi.org/10.1103/PhysRevResearch.2.013071
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Figure 4.1: (a) A driven nonlinear dissipative quantum system (gray
box) is monitored by a photon-counting measurement with detection
efficiency η. The detection signal provides a herald for the creation
of a pseudosteady state in the system. (b) In a homodyne detection
setup, a local oscillator (LO) signal is added before the detection,
which allows one to modify the pseudosteady state.

one to stabilize certain nonclassical states without feedback, including Schrödinger
kitten states.

In contrast to most heralded state preparation protocols relying on a photon de-
tection event that heralds the projection to a (potentially maintained) target state
[Clausen et al., 1999; Lund et al., 2004; Lance et al., 2006; Bimbard et al., 2010;
Takeda et al., 2013; Galland et al., 2014; Hong et al., 2017; Zhang and Baranger,
2019], we explore the opposite approach and use the photon-counting measurement to
identify a time evolution which continuously relaxes the system into the target state,
similar to Sörgel and Hornberger [2015]. Because the system will stay in this state
conditioned on no further photon detection events, we will refer to it as a pseudosteady
state, to distinguish our mechanism from dissipative steady-state stabilization [Poy-
atos et al., 1996; Krauter et al., 2011; Mamaev et al., 2018; Brunelli et al., 2018].

On one hand, our results shed light on the actual dynamics of a dissipative quan-
tum system when the information leaking out to the environment is not discarded. On
the other hand, they can be seen as a practical protocol for heralded state preparation
in dissipative quantum systems that is feasible with current technology.

This chapter is structured as follows. In Section 4.2, we introduce a general model
of a continuously monitored driven dissipative quantum system, which is based on a
QME. We also introduce the driven and damped Kerr oscillator, which will serve as
an example to illustrate the protocol. Then, an overview of the protocol is given in
Section 4.3. The mathematical derivation of the pseudosteady state and its associated
relaxation rate is summarized in Section 4.4 for the case of a SME and of a SSE. Sub-
sequently, numerical results on the generation of nonclassical states, characterized by
a negative Wigner function, are presented and discussed in Section 4.5. In particular,
Section 4.5.2 is devoted to the question how to increase the nonclassicality of a state
by changing the continuous detection method. The impact of imperfect detection and
finite temperature on the state generation protocol is discussed in Section 4.6. Finally,
we comment on the experimental implementation of the protocol in Section 4.7 and
conclude in Section 4.8.

4.2 Continuously monitored dissipative quantum system

We consider a dissipative quantum system that exchanges photons with a finite-
temperature environment. Its QME is

d

dt
ρ̂ = L0ρ̂+ κ(nth + 1)D[â]ρ̂+ κnthD[â†]ρ̂ , (4.1)
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where â is the photon annihilation operator, κ denotes the energy decay rate, nth is
the thermal photon number due to interaction with the environment, and the Lind-
blad dissipators D are defined in Equation (2.12). In general, L0 can be any com-
pletely positive and trace-preserving linear superoperator such that Equation (4.1)
has a steady-state solution ρ̂ss. A photon detector constantly monitors the emission
of photons by the system into the environment, as shown in Figure 4.1(a). The pho-
ton detection process is assumed to have an overall detection efficiency 0 ≤ η ≤ 1.
Imperfect detection, η < 1, may be caused by losses of photons on the way to the de-
tector, i.e., absorption or scattering, or by imperfections of the photon detectors. As
discussed in Section 3.3, imperfect detection can be modeled by splitting the Lindblad
dissipator in two terms, cf. Equation (3.8),

D[â]ρ̂ = D[
√
ηâ]ρ̂+D[

√
1− ηâ]ρ̂ .

The first term describes photon emission at a rescaled emission rate and will be
treated as a perfectly monitored dissipative interaction. The second term represents an
unmonitored dissipative interaction. In addition, we assume that the beam of emitted
photons may be displaced by a local oscillator (LO) signal

√
κ(nth + 1)ηξ before

detection, as shown in Figure 4.1(b). As derived in Section 2.2.2, this displacement
gives rise to a modified QME of the form of Equation (2.15),

d

dt
ρ̂ = L0ρ̂−

i

~

[
i~
κ

2
(nth + 1)η

(
ξâ† − ξ∗â

)
, ρ̂
]

+ κnthD[â†]ρ̂

+ κ(nth + 1)ηD[â+ ξ]ρ̂+ κ(nth + 1)(1− η)D[â]ρ̂ .

As derived in Section 2.2.2, a continuous detection of the photons emitted via the
Lindblad operator â+ ξ is modeled by the SME

dρ̂ = Lρ̂dt+

[
(â+ ξ)ρ̂(â† + ξ∗)

Tr[(â† + ξ∗)(â+ ξ)ρ̂]
− ρ̂
]

dN , (4.2)

Lρ̂ = (L+N ) ρ̂− Tr (N ρ̂) ρ̂ . (4.3)

The continuous part of the time evolution is given by the nonlinear superoperator L.
We introduced the abbreviations

Lρ̂ = L0ρ̂−
i

~

[
i~
κ

2
(nth + 1)η

(
ξâ† − ξ∗â

)
, ρ̂
]

+ κnthD[â†]ρ̂+ κ(nth + 1)(1− η)D[â]ρ̂ , (4.4)

N ρ̂ = −κ
2

(nth + 1)η
{

(â† + ξ∗)(â+ ξ), ρ̂
}
. (4.5)

The stochastic increment dN is either zero or unity and is distributed according to a
Poissonian distribution with expectation value

E[dN ] = κ(nth + 1)ηTr
[
(â† + ξ∗)(â+ ξ)ρ̂

]
dt . (4.6)

As discussed in Section 2.2, the limit ξ → 0 corresponds to conventional photon
detection, shown in Figure 4.1(a), whereas the limit ξ →∞ corresponds to homodyne
detection.
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As a model system to illustrate our state generation protocol, we use a Kerr
nonlinear oscillator. In this case, the superoperator L0 is given by

L0ρ̂ = − i
~

[
Ĥ0, ρ̂

]
, (4.7)

where Ĥ0 is the Hamiltonian (2.78) of a Kerr nonlinear oscillator,

Ĥ0 = −~∆â†â+ ~Kâ†â†ââ+ ~
(
α1â

† + α2â
†â† + H.c.

)
. (4.8)

Here, K denotes the strength of the Kerr nonlinearity and α1 and α2 denote the
strength of the harmonic and parametric drives, respectively, as introduced in Sec-
tion 2.5. We work in a frame rotating at the harmonic drive frequency ωhar, and
∆ is the detuning of the drives with respect to the natural frequency ω0 defined in
Equation (2.79). Note that for this choice of L0 and Ĥ0, Equation (4.1) has a strictly
positive steady-state Wigner function for any choice of the parameters [Kheruntsyan
et al., 1996; Kheruntsyan, 1999; Bartolo et al., 2016].

4.3 Heralded state preparation protocol

The SME (4.2) describes a continuous time evolution of the state ρ̂ that is inter-
rupted by discontinuous quantum jump events. This will lead to an interplay of two
timescales: After initial transient dynamics, the quantum trajectories fluctuate on
average around the steady state ρ̂ss of Equation (4.1), as shown in Figure 4.2(a). This
steady state determines the average rate of quantum jumps,

Γjump =
E[dN ]

dt
= −Tr(N ρ̂ss) . (4.9)

Between two adjacent quantum jumps, the state ρ̂ evolves continuously according to
the nonlinear superoperator L, which has a steady-state solution fulfilling

Lρ̂ps = 0 (4.10)

and an associated relaxation rate Γrel towards ρ̂ps. In the following, we will call ρ̂ps

the pseudosteady state of the stochastic quantum master equation (4.2) because it is
a steady state conditioned on the absence of photon detection events.

If the condition Γrel & Γjump holds, the waiting time between two adjacent quan-
tum jumps can be much larger than the relaxation time and ρ̂ relaxes exponentially
to ρ̂ps, as shown in Figure 4.2(b). Hence, a photon detection event followed by no
further click of the detector for several relaxation times 1/Γrel heralds the preparation
of the state ρ̂ps and the waiting time since the last detection event determines the
state preparation fidelity.

This state preparation mechanism differs from other state preparation protocols
studied in the literature in the following way. Previous state preparation protocols
[Clausen et al., 1999; Lund et al., 2004; Lance et al., 2006; Bimbard et al., 2010;
Takeda et al., 2013; Galland et al., 2014; Hong et al., 2017; Zhang and Baranger, 2019]
considered a composite closed quantum system consisting of the subsystem S hosting
the target state and an ancillary system A that is measured during the protocol.
The combined system is initialized in a state that is easily accessible, usually the
joint ground state of S and A. Next, a time evolution is applied that generates a
superposition of quantum states which includes the target state in S entangled with a
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Figure 4.2: (a) Photon number
〈
â†â
〉
of a Kerr oscillator subjected

to a harmonic drive and photon counting (solid green line). The quan-
tum trajectory consists of a continuous time evolution towards a pseu-
dosteady state ρ̂ss whose photon number is indicated by the thick
dashed gray line. This time evolution is interrupted by quantum jump
events at random times indicated by black triangles. An ensemble av-
eraged over 500 quantum trajectories (thin solid red line) reproduces
the constant steady-state result

〈
â†â
〉

ss
. In the intervals highlighted

in light yellow, the waiting time between two adjacent quantum jumps
is longer than 5 times the relaxation time. (b) After a quantum jump
event, the trace distance between the instantaneous state and the pseu-
dosteady state (solid black line) decays exponentially at a rate Γrel

(dashed orange line). (c) Spectrum of the non-Hermitian Hamiltonian
that defines the relaxation dynamics for η = 1 and nth = 0. The relax-
ation rate Γrel is the imaginary part of the smallest gap between the
stable eigenstate |ψ〉ps (solid circle) and the unstable eigenstates (open
circles). Parameters are ∆/κ = 1.5, K/κ = 2.2, |α1|2K/κ3 = 1.5,
α2/κ = 0, and ξ = 0.

unique herald state in A. If the measurement of the ancillary subsystem A yields the
outcome corresponding to this herald state, the joint state of S and A has collapsed
such that the desired target state is realized in S. Our approach differs from these
heralding protocols in the following two points. First, it does not require an ancillary
system but instead it directly observes the leaky cavity that is going to host the
target state ρ̂ps. Second, it does not generate the target state by a collapse of the
wave function, since the absence of a detection event is used as a herald. Instead, the
target state ρ̂ps is generated by an intrinsic relaxation process that is induced by the
continuous measurement.

Conditions on the competing rates Γrel and Γjump to generate nonclassical states in
a Kerr nonlinear oscillator will be discussed in more detail in Section 4.5. Before, we
express the state ρ̂ps and its associated relaxation rate Γrel in terms of the properties
of the superoperators L and N .

4.4 Pseudosteady state and relaxation rate

4.4.1 Stochastic quantum master equation

In the following we require that the QME (4.1) has a steady-state solution ρ̂ss and that
the superoperator L+N has a set of left and right eigenstates ρ̌µ and ρ̂µ, respectively,
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which are defined by

(L+N )ρ̂µ = λµρ̂µ , (4.11)

(L+N )†ρ̌µ = λ∗µρ̌µ . (4.12)

We assume that these eigenstates can be normalized to form a complete orthonormal
basis with respect to the Hilbert-Schmidt scalar product,

(ρ̌ν , ρ̂µ) = Tr(ρ̌†ν ρ̂µ) = δν,µ , (4.13)

which is a valid assumption for all systems that do not have exceptional points [Moi-
seyev, 2011]. A pseudosteady state of Equation (4.2) is a density matrix ρ̂ that is
Hermitian, positive semidefinite, normalized to unit trace, and that is a stable solu-
tion of the nonlinear equation

Lρ̂ = 0 . (4.14)

In a first step, we now determine the solutions of Equation (4.14). Their stability will
be discussed below. We decompose ρ̂ with respect to the basis of eigenstates of L+N ,

ρ̂ =
∑
µ

cµρ̂µ , (4.15)

where the expansion coefficients cµ need to be determined. By construction, L is a
trace-preserving superoperator, i.e., the condition Tr(Lρ̂) = 0 holds for any state ρ̂.
Taking the trace of Equation (4.11), we find the relation

Tr(N ρ̂µ) = λµTr(ρ̂µ) . (4.16)

Calculating the Hilbert-Schmidt product of Lρ̂ = 0 with respect to all left eigen-
states ρ̌ν and using Equation (4.16), we obtain the following set of conditions for the
expansion coefficients cµ:

∀µ : cµ

[
λµ −

∑
β

cβλβTr(ρ̂β)
]

= 0 . (4.17)

For a nondegenerate eigenvalue λµ, all expansion coefficients must be zero except for
the coefficient cµ of the corresponding eigenstate ρ̂µ. Consequently, each eigenstate ρ̂µ
to a nondegenerate eigenvalue λµ is a solution of Equation (4.14) provided that it is
Hermitian, positive semidefinite, and has nonzero trace such that it can be normalized
by choosing cµ = 1/Tr(ρ̂µ),

ρ̂ = cµρ̂µ =
ρ̂µ

Tr(ρ̂µ)
.

For a N -fold degenerate eigenvalue λ = λµ1 = λµ2 = · · · = λµN , all but the coefficients
cµi belonging to the degenerate subspace {λµ1 , . . . , λµN } are zero. Any statistical
mixture of the eigenstates in the degenerate subspace,

ρ̂ =

N∑
j=1

cµj ρ̂µj ,
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is a solution of Equation (4.14) provided that it describes a Hermitian and positive
semidefinite density matrix that is normalized to unit trace,

∑N
j=1 cµjTr(ρ̂µj ) = 1.

Since L is a nonlinear superoperator, some of the solutions to Lρ̂ = 0 may be
unstable against perturbations. To analyze the stability of a solution ρ̂ to eigenvalue
λ, we perform a linear stability analysis [Strogatz, 2015] and make the ansatz

χ̂ = (ρ̂+ εσ̂)[1− εTr(σ̂)] , (4.18)

where ε � 1 is a small parameter and σ̂ is a Hermitian and positive-semidefinite
density matrix that is orthogonal to ρ̂. Note that χ̂ is normalized to leading order in
ε. The projectors on the state ρ̂ and the subspace orthogonal to ρ̂ are given by

Pρ̂ = ρ̂Tr(ρ̌†·) , (4.19)
P⊥ρ̂ = 1− Pρ̂ , (4.20)

respectively. The suitably normalized left state ρ̌ associated with the state ρ̂ given in
Equation (4.15) is

ρ̌ =

∑
µ cµρ̌µ∑
β |cβ |

2 .

We now expand ˙̂χ = Lχ̂ in powers of ε. The first-order terms give rise to the condition

d

dt
σ̂ − ρ̂Tr

(
d

dt
σ̂

)
= (L+N )σ̂ − Tr(N σ̂)ρ̂− λσ̂ + λTr(σ̂)ρ̂ . (4.21)

Since σ̂ must be orthogonal to ρ̂, we project Equation (4.21) on the subspace per-
pendicular to ρ̂ using the projector P⊥ρ̂ and we decompose the perturbation σ̂ with
respect to the basis of eigenstates of L+N as follows:

σ̂ = P⊥ρ̂
∑
µ

dµρ̂µ . (4.22)

In this way, we obtain the following condition for the expansion coefficients dµ,∑
µ

ḋµP⊥ρ̂ρ̂µ =
∑
µ

dµ(λµ − λ)P⊥ρ̂ρ̂µ . (4.23)

The state ρ̂ is stable if all expansion coefficients dµ of perturbations orthogonal to ρ̂
decay to zero. The overall relaxation rate is dominated by the contribution P⊥ρ̂ρ̂µ
with the slowest decay rate.

For a nondegenerate spectrum {λµ}, we can simplify Equation (4.23) further. In
this case, each solution ρ̂ of Equation (4.14) is an eigenstate ρ̂α of L+N to eigenvalue
λ = λα and we can rewrite Equation (4.23) to

∀µ 6= α :
d

dt
dµ = (λµ − λ)dµ .

Hence, the state ρ̂ = ρ̂α is stable if Re(λµ−λ) ≤ 0 holds for all µ 6= α, i.e., if λ = λα is
the eigenvalue of the spectrum with the largest real part. The decay rate of a state ρ̂µ
towards ρ̂ is given by Γrelµ→α = −Re(λµ − λα), which is the real part of the spectral
gap between the two eigenstates. The relaxation rate is dominated by smallest decay
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rate, i.e.,

Γrel = min
µ6=α

Re(λα − λµ) .

4.4.2 Stochastic Schrödinger equation

In the limit of perfect detection efficiency, η = 1, and zero temperature, nth = 0, and
if the superoperator L0 in Equation (4.1) describes only unitary dynamics, as given
in Equation (4.7), the photon counting measurement can be modeled by the SSE

d |ψ〉 = H |ψ〉 dt+

[
(â+ ξ) |ψ〉√

〈ψ| (â† + ξ∗)(â+ ξ) |ψ〉
− |ψ〉

]
dN , (4.24)

H |ψ〉 =

[
− i
~

(
Ĥ − i~M̂

)
+ 〈ψ| M̂ |ψ〉

]
|ψ〉 , (4.25)

where the continuous time evolution is given by the nonlinear operator H. It is
characterized by the non-Hermitian Hamiltonian Ĥ−i~M̂ composed of the Hermitian
operators

Ĥ = Ĥ0 − i~
κ

2

(
ξ∗â− ξâ†

)
,

M̂ =
κ

2
(â† + ξ∗)(â+ ξ) .

As derived in Section 2.2.2, dN ∈ {0, 1} is a Poissonian increment with an ensemble-
averaged expectation value

E[dN ] = 〈ψ|
(
M̂ + M̂ †

)
|ψ〉 dt .

We now derive the pseudosteady states of the SSE (4.24). These are normalized
quantum states |ψ〉 that are stable stationary solutions of the nonlinear equation

d

dt
|ψ〉 = H |ψ〉 . (4.26)

A stationary solution |ψ(t)〉 = e−iEψt/~ |ψ(0)〉 characterized by a real energy Eψ can
actually exist because the decay of the norm of |ψ〉 due to the non-Hermitian term
−i~M̂ in Equation (4.25) is compensated by the nonlinear term 〈ψ| M̂ |ψ〉. Insert-
ing the ansatz for a stationary solution into Equation (4.26), we find the following
nonlinear equation for |ψ〉 = |ψ(0)〉.

− i
~
Eψ |ψ〉 = H |ψ〉 . (4.27)

As for the case of a SME discussed in Section 4.4.1, we assume that the QME (4.1)
has a steady-state solution ρ̂ss and that the non-Hermitian Hamiltonian Ĥ− i~M̂ has
a set of left and right eigenstates

(Ĥ − i~M̂) |ψµ〉 = hµ |ψµ〉 , (4.28)

(Ĥ − i~M̂)†
∣∣ψµ〉 = h∗µ

∣∣ψµ〉 , (4.29)
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that form a complete orthonormal basis with respect to the scalar product〈
ψµ|ψν

〉
= δµ,ν .

We now decompose |ψ〉 with respect to this basis,

|ψ〉 =
∑
µ

cµ |ψµ〉 . (4.30)

Inserting this decomposition into Equation (4.27) and taking the scalar product with
respect to all states |ψν〉, we obtain the following set of conditions for the expansion
coefficients cµ:

∀µ : cµ

− i
~

(Eψ − hµ)−
∑
β,γ

c∗βcγ 〈ψβ | M̂ |ψγ〉

 = 0 . (4.31)

For a nondegenerate eigenvalue hµ, all expansion coefficients must be zero except
for the coefficient cµ of the corresponding eigenstate |ψµ〉. Inserting this into Equa-
tion (4.31), we find that each normalized eigenstate |ψµ〉 to a nondegenerate eigenvalue
hµ is a stationary solution of Equation (4.26) with real energy Eψµ = 〈ψµ| Ĥ |ψµ〉,

|ψ〉 =
|ψµ〉√
〈ψµ|ψµ〉

.

For a degenerate eigenvalue h = hν1 = · · · = hνN , any normalized superposition
|ψ〉 =

∑N
i=1 cνi |ψνi〉 of the eigenstates belonging to this degenerate subspace is a

pseudosteady state with Eψ = 〈ψ| Ĥ |ψ〉.
SinceH is a nonlinear operator, some of the stationary solutions of Equation (4.27)

may be unstable. To analyze the stability of a stationary state |ψ〉 with associated
eigenvalue h, we make the ansatz

|χ〉 = e−iEψt(|ψ〉+ ε |σ〉)[1− εRe(〈ψ|σ〉)] , (4.32)

where ε� 1 is a small parameter and |σ〉 is a state orthogonal to |ψ〉. Note that |χ〉
is normalized to leading order in ε. We now expand d |χ〉 /dt = H |χ〉 in powers of ε.
Projecting the first-order terms on the subspace perpendicular to |ψ〉 gives rise to the
condition

d

dt
P̂⊥|ψ〉 |σ〉 = − i

~

[
P̂⊥|ψ〉(Ĥ − i~M̂)P̂⊥|ψ〉 − h

]
P̂⊥|ψ〉 |σ〉 ,

where the projectors P̂|ψ〉 and P̂⊥|ψ〉 on the subspace spanned by |ψ〉 and the orthogonal
subspace, respectively, are defined by

P̂|ψ〉 = |ψ〉 〈ψ| , (4.33)

P̂⊥|ψ〉 = 1̂− P̂|ψ〉 . (4.34)

The suitably normalized left state
∣∣ψ〉 associated with the state |ψ〉 =

∑
µ cµ |ψµ〉 is

∣∣ψ〉 =

∑
µ cµ

∣∣ψµ〉∑
ν |cν |

2 .
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Again, we decompose with respect to the basis of eigenstates |ψµ〉 of Ĥ − i~M̂ ,

|σ〉 =
∑
µ

dµ |ψµ〉 , (4.35)

and we obtain the condition∑
µ

ḋµP̂⊥ |ψµ〉 = − i
~
∑
µ

dµ(hµ − h)P̂⊥ |ψµ〉 . (4.36)

The state |ψ〉 is stable if all expansion coefficients cµ associated with perturbations
orthogonal to |ψ〉 decay to zero.

Recall that for a non-degenerate spectrum {hµ}, the pseudosteady state |ψ〉 =
|ψα〉 is an eigenstate of Ĥ − iM̂ to eigenvalue h = hα. Therefore, we can rewrite
Equation (4.36) to

∀µ 6= α :
d

dt
dµ = − i

~
(hµ − h)dµ . (4.37)

Hence, the state |ψ〉 = |ψα〉 is stable if Im(hµ − h) ≤ 0 holds for all µ 6= α, i.e.,
if h = hα is the eigenvalue of the spectrum with the largest imaginary part. The
decay rate of any state |ψµ〉 towards |ψ〉 is given by Γrelµ→α = −Im(hµ − hα)/~ =

〈ψµ| M̂ |ψµ〉 − 〈ψα| M̂ |ψα〉, which is the imaginary part of the spectral gap between
the two eigenstates |ψµ〉 and |ψα〉. The overall relaxation rate is dominated by the
smallest decay rate,

Γrel = min
µ6=α

Im(hα − hµ)

~
.

Thus, for a non-degenerate spectrum {hµ} there is only one stable pseudosteady state
|ψ〉ps and the relaxation rate is determined by the smallest imaginary gap between
this stable pseudosteady state and the unstable eigenstates of Ĥ−i~M̂ . This is shown
in Figure 4.2(c) for a Kerr oscillator subjected to a harmonic drive.

4.5 Nonclassical states in a Kerr oscillator

In this section, we illustrate the state preparation protocol introduced in Section 4.3
by applying it to a driven and damped Kerr oscillator, introduced in Section 2.5. In
a first step, we will concentrate on the limit of perfect detection efficiency, η = 1,
and zero temperature, nth = 0. Therefore, we will use the description of the photon-
counting process in terms of a SSE, introduced in Section 4.4.2. The more general
case will be discussed in Section 4.6.

Our goal is to generate nonclassical pseudosteady states. The state ρ̂ of a quantum
system can be represented by its Wigner function

Wρ̂(α) =
2

π
Tr
[
ρ̂D̂(α)Π̂D̂†(α)

]
,

which has been introduced in Section 2.3. The Wigner function is a quasi-probability
distribution in phase space and negative values of Wρ̂(α) indicate a nonclassical state
[Gerry and Knight, 2005; Zurek, 2003]. In the following, we will show that the pseu-
dosteady state ρ̂ps of a Kerr oscillator can have a negative Wigner function Wρ̂(α),
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whereas the steady-state Wigner function Wρ̂ss(α) has been proven to be strictly pos-
itive [Kheruntsyan et al., 1996; Kheruntsyan, 1999; Bartolo et al., 2016]. As a single-
number measure of negativity, we use the modulus of the minimum of the Wigner
function,

N(ρ̂) =
∣∣∣min
α

[Wρ̂(α)]
∣∣∣ , (4.38)

which is non-zero if Wρ̂(α) has negative values and zero otherwise.
Adding a nonlinearity to the system, for instance via the Kerr term in Ĥ0, is a

necessary condition to create nonclassical states. Without nonlinearity, all terms in
Equation (4.3) are at most quadratic in â(†) and can only give rise to states with
strictly positive Wigner functions if the initial state is Gaussian [Gardiner and Zoller,
2000]. Note that having a nonlinearity is not a sufficient condition for nonclassicality
since the steady state of a Kerr oscillator subjected to harmonic and parametric drives
always has a strictly positive Wigner function despite its intrinsic nonlinearity.

4.5.1 Harmonic drive

In this section, we assume that only a harmonic drive is applied to the Kerr oscillator,
α1 ≥ 0 and α2 = 0. In this case, the steady-state solution is characterized by the
dimensionless detuning ∆/κ, the rescaled drive power |α1|2K/κ3, and the ratio K/κ
[Meaney et al., 2014], as discussed in Section 2.5.1. In Figure 4.3(a), we plot the
scaling of the jump rate Γjump, the relaxation rate Γrel, and the negativity N(|ψ〉ps)
as a function of the ration K/κ for fixed values of the dimensionless detuning and the
rescaled drive power, and for ξ = 0.

In the limit K � κ, we find that the relaxation rate converges to a constant value,
the jump rate decreases inversely proportional to K/κ, and the negativity decays to
zero. These results can be understood as follows. If the relaxation towards |ψ〉ps is
much faster than the typical interval between quantum jump events kicking the system
out of the pseudosteady state, Γrel � Γjump, the system will be in the pseudosteady
state almost all the time along every quantum trajectory. Since an ensemble average
over many quantum trajectories must reproduce the unconditional steady state, the
pseudosteady state must converge to the unconditional steady state in the limit K �
κ. Consequently, the negativity converges to zero since the unconditional steady state
of a Kerr oscillator has a classical Wigner function, N(ρ̂ss) = 0.

The relaxation rate Γrel is determined by the imaginary part of the spectrum,
−~〈M̂〉 = −κ〈â†â〉/2, which represents the photon-number expectation values of the
eigenstates of the non-Hermitian Hamiltonian Ĥ0−i~M . In the limit K � κ, the non-
Hermitian Hamiltonian is dominated by the Kerr term and its eigenstates converge
to Fock states. The smallest spectral gap is determined by the difference of the Fock
states |0〉 and |1〉, i.e., it is constant,

Γrel

κ
→ 1

2
.

In particular, we find |ψ〉ps → |0〉 and ρ̂ss → |0〉 〈0| in the limit K � κ, as motivated
above by the argument based on the ensemble-average over quantum trajectories.

The scaling of Γjump with κ/K reflects the properties of the semiclassical solution
of the driven and damped Kerr oscillator, discussed in Section 2.5: The semiclassical
steady-state photon number |αss|2 scales proportional to κ/K, see Equation (2.85).
Up to corrections due to the shape and spread of the Wigner function in phase space,
the same scaling must apply to the quantum-mechanical photon-number expectation
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Figure 4.3: (a) Relaxation rate Γrel towards the pseudosteady state
|ψ〉ps (solid blue), jump rate Γjump (dotted red), and negativity of
the Wigner function (solid black) for a Kerr oscillator subject to a
harmonic drive, a dimensionless detuning ∆/κ = 1.5, and a rescaled
drive power |α1|2K/κ3 = 1.5. In the area highlighted in gray, the
quantum trajectory is dominated by stochastic quantum jump events,
Γjump ≥ Γrel, and |ψ〉ps cannot be prepared. The open green rect-
angle indicates the maximum observable negativity Nmax and the pa-
rameters of Figure 4.2. (b) Adding a LO signal

√
κξ allows one to

unravel different pseudosteady states. The ratio Γrel(ξ)/Γjump(ξ) (left
plot) and the negativity N(|ψ(ξ)〉ps) (right plot) now depend on the
complex LO signal ξ. All states within the black curve indicating
Γrel(ξ)/Γjump(ξ) = 1 can be prepared in a heralded way. The value
of ξ indicated by an open white triangle maximizes N(|ψ(ξ)〉ps) under
this constraint. (c) Maximum observable negativity Nmax as a func-
tion of dimensionless detuning and rescaled drive power without (left)
and with (right) an optimization of the LO signal ξ. In the triangle
enclosed by the gray lines, two semiclassical steady-state solutions αss

exist as discussed in Section 2.5.1.

value,
〈
â†â
〉
≈ |αss|2 ∝ κ/K. Therefore, the jump rate scales inversely proportional

to the Kerr nonlinearity,

Γjump

κ
∝ κ

K
.

This result shows that for K & κ, relaxation rate and jump rate will become
comparable, Γrel & Γjump. In this regime, the pseudosteady state differs from ρ̂ss and
can be nonclassical, as shown in Figure 4.3(a). Quantum jumps let each quantum
trajectory explore many different states |ψ〉 (t) which compensate negative values of
W|ψ〉ps(α) and ensure that an ensemble average still reproduces a strictly positive
steady-state Wigner function Wρ̂ss(α). Since Γrel is comparable to or larger than the
jump rate Γjump, relaxation processes towards |ψps〉 are possible between successive
quantum jumps.

This is no longer the case in the limit K � κ, when the quantum trajectory is
dominated by stochastic quantum jump events. The intervals between two quantum
jumps are much shorter than the relaxation time, Γjump � Γrel, and the state |ψ(t)〉
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can no longer relax to |ψ〉ps. Considering this, we define the maximum observable
negativity Nmax as the maximum of N(|ψ〉ps) in the regime Γrel ≥ Γjump. The left
subplot of Figure 4.3(c) displays Nmax as a function of the dimensionless detuning and
the rescaled drive power. Usually, the negativity N(|ψ〉ps) decreases monotonically as
a function of K/κ, such that the maximum observable negativity Nmax is achieved for
Γrel = Γjump. However, in the regime where two stable semiclassical solutions exist,
which is enclosed by the gray lines in Figure 4.3(c), the largest negativity is observed
for Γrel > Γjump.

4.5.2 Unraveling different pseudosteady states

As discussed in Section 2.2.3, the procedure of unraveling a quantum master equation
is not unique [Wiseman and Milburn, 2009]. Consequently, the operator H is not
uniquely defined and many different pseudosteady states |ψ〉ps can be stabilized to a
given steady-state solution ρ̂ss. This gives us a turning knob to tune the pseudosteady
state and its negativity by modifying the way how the system is continuously moni-
tored. To illustrate this point, we now consider the homodyne detection setup shown
in Figure 4.1(b). A beam splitter is placed between the system and the photon detec-
tor, such that a LO signal

√
κ(nth + 1)ηξ is added to the system’s output. Combining

Equations (4.6) and (4.9), we find that the jump rate depends on ξ,

Γjump(ξ) = κ(nth + 1)η
〈

(â† + ξ∗)(â+ ξ)
〉

ss
.

The SME (4.2) in the case ξ 6= 0 can be rewritten as a SME of a pure photon-counting
measurement (ξ′ = 0) in a displaced frame∣∣ψ′〉 = D̂(ξ) |ψ〉 (4.39)

with a modified Hamiltonian

Ĥ ′0(ξ) = D̂(ξ)Ĥ0D̂
†(ξ)− i~κ

2
(ξ∗â− ξâ†) .

Thus, displacing the output mode â also modifies the Hamiltonian and, therefore, the
relaxation rate Γrel(ξ). The ratio Γrel(ξ)/Γjump(ξ) as a function of the LO signal in
the limit nth → 0 and η → 1 is shown in Figure 4.3(b).

In contrast to the standard homodyne detection limit |ξ| � 〈â〉, where the LO
signal dominates and the quantum trajectory is a continuous Wiener process [Wiseman
and Milburn, 2009], we consider the opposite limit |ξ| . 〈â〉, such that the detection
of photons is still a Poissonian quantum jump process. Moreover, a state |ψ(ξ)〉ps can
only be prepared if Γrel ≤ Γjump holds, which restricts ξ to the area inside the black
curve in Figure 4.3(b). Nevertheless, an optimization of the LO signal ξ under these
constraints significantly increases the maximum observable negativity Nmax over the
case of ξ = 0, as shown in the right subplot of Figure 4.3(c).

Note that our protocol reveals that the unbalanced and balanced homodyne de-
tection schemes introduced in Sections 2.2.3 and 2.2.4, respectively, differ if the LO
signal ξ is small. Only in the limit of a strong LO signal, |ξ|2 � 〈â†â〉, both de-
tection schemes give rise to the same SME (2.36) describing a continuous Wiener
process. While the overall detection signal is proportional to a field quadrature of ρ̂
independent of the value of |ξ|, the SMEs (2.25) and (2.39) approximating homodyne
detection as a photon-counting process are actually different. In particular, except for
an irrelevant constant factor |ξ|2 in the superoperator N , the nonlinear continuous
time evolution Lρ̂ = (L+N )ρ̂− Tr(N ρ̂)ρ̂ for balanced homodyne detection, defined
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by Equations (2.40) and (2.41), is identical to the corresponding result obtained for
photon counting without any displacement of the mode, defined by Equations (2.26)
and (2.27) for ξ = 0. This implies, that displacing the mode â before detection is only
useful if an asymmetric beam splitter with a transmittivity larger than 50 % is used.

4.5.3 Parametric drive

Our protocol can be used to stabilize small Schrödinger cat states in a Kerr oscillator
without the need for feedback [Minganti et al., 2016]. To demonstrate this, we consider
a resonant parametric drive, i.e., ∆ = 0, α1 = 0, and α2 ≥ 0. Again, we focus on
the case η = 1 and nth = 0, and we set ξ = 0. For these parameters, the non-
Hermitian Hamiltonian Ĥ0 − i~M̂ commutes with the parity operator Π̂, defined in
Equation (2.49). Thus, the spectrum consists of two subspaces of eigenstates having
different parity, {h±µ }. The operator H preserves parity and does not mix these
subspaces, therefore, both the even and the odd-parity eigenstate

∣∣ψ±µ0〉 with largest
imaginary part of the eigenvalue h±µ0 are stable, as shown in Figure 4.4(a), and their
relaxation rates are determined by the imaginary parts of the spectral gaps to the
unstable eigenstates of the corresponding parity.

While we redefined here the relaxation rate Γrel to take into account parity con-
servation, the relevant quantity to be compared to Γjump in the heralding protocol is
still the first spectral gap,

Γasy = Im(h+
µ0 − h

−
µ0) . (4.40)

Photon detection events change the parity of the state |ψ〉 and approximately map the
stable states

∣∣ψ±µ0〉 onto one another, such that the quantum trajectories jump between
the two states, as shown in Figure 4.4(b). The rate Γasy measures the asymmetry in
the jump rates of

∣∣ψ±µ0〉, which stems from their different photon-number expectation
values. If Γasy ≥ Γjump holds, the states can be discriminated in the photon detection
signal and the longer-lived state

∣∣ψ+
µ0

〉
can be prepared in a heralded way, i.e., |ψ〉ps =∣∣ψ+

µ0

〉
. The relaxation rate Γrel towards |ψ〉ps is given by the second spectral gap

and determines the relaxation â
∣∣ψ−µ0〉 → ∣∣ψ+

µ0

〉
, as shown in Figure 4.4(c). Since

Γrel > Γasy holds, the relaxation to the target state within the heralding interval is
guaranteed.

Similar to the case of a harmonic drive, Figure 4.4(d) shows that there is a trade-off
between a large ratio Γasy/Γjump and a large negativity N(|ψ〉ps). Again, this is be-
cause the steady-state Wigner function Wρ̂ss is strictly positive and the pseudosteady
state converges to the unconditional steady state in the limit Γasy � Γrel. The nega-
tivity N(|ψ〉ps) vanishes also in the limit K/κ → 0, as shown in Figure 4.4, because
in the absence of a Kerr nonlinearity the parametric drive will only create squeezed
states with a strictly positive Wigner function.

Importantly, in the limit K � κ the states
∣∣ψ±µ0〉 converge to the even and odd

Schrödinger cat states |C±〉, introduced in Section 2.5.2,

|C±〉 =
|α〉 ± |−α〉√
2± 2e−2|α|2

,

where α = i
√
α2/K. In this regime, the steady-state solution ρ̂ss is a statistical mix-

ture of the two indistinguishable cat states |C±〉 and has a strictly positive Wigner
function. For α2/K . 1/2, the two cat states differ in their photon-number ex-
pectation values (2.92), such that the small correction −i~M̂ ∝ κâ†â due to the
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Figure 4.4: (a) Spectrum of even-parity (circles) and odd-parity
(squares) stable (solid markers) and unstable (open markers) eigen-
states of the non-Hermitian Hamiltonian that defines the relaxation
dynamics for a Kerr oscillator subject to a resonant parametric drive.
The imaginary part of the gap between the two stable states determines
their jump-rate asymmetry Γasy. (b) Photon-number

〈
â†â
〉
in the

steady-state regime. An average over 500 trajectories reproduces the
steady-state result (thin red), which determines the jump rate Γjump.
Each quantum trajectory (solid green line) jumps between the stable
states of opposite parity (jump times indicated by black triangles). If
Γasy & Γjump holds, one can prepare the stable even-parity eigenstate
|ψ〉ps in a heralded way. (c) After a quantum jump event, the trace
distance between |ψ(t)〉 and |ψ〉ps (solid black) decays exponentially.
Since parity is conserved, the relaxation happens at a rate Γrel (dashed
orange), which is the imaginary part of the second spectral gap. For
comparison, the dash-dotted blue line indicates a decay at the rate
Γasy corresponding to the first spectral gap. (d) Relaxation rate Γrel

(dashed orange), jump-rate asymmetry Γasy (dash-dotted blue), total
jump rate Γjump (dashed red), and Wigner-function negativity (solid
black) as a function of the drive strength. In the gray area, the time
evolution is dominated by stochastic quantum jumps, Γjump ≥ Γasy,
and |ψ〉ps cannot be prepared. (e) Maximum observable negativity as
a function of the dimensionless Kerr nonlinearity K/κ. Parameters:
∆/κ = 0, K/κ = 10, α1/κ = 0, α2/κ = 5.3, ξ = 0, nth = 0, and η = 1.



78 4. Heralded Dissipative Generation of Nonclassical States in Nonlinear Systems

photon detection breaks this symmetry and allows us to stabilize a small even-parity
Schrödinger cat state |C+〉 = |ψ〉ps without feedback. Since these states have a small
size |α|2 ≤ 1, they are called Schrödinger kitten states [Ourjoumtsev et al., 2006].

4.6 Finite temperature and imperfect photon detection

In an experiment, the environment of the Kerr nonlinear oscillator has a finite temper-
ature and it may emit photons into the dissipative quantum system. Moreover, current
photon detectors have detection efficiencies of less than 100 % such that photons emit-
ted by the Kerr oscillator may escape undetectedly. Both effects give rise to unmoni-
tored dissipative processes that require us to go beyond the stochastic Schrödinger
equation (4.24) that has been used so far in our numerical investigations. Instead, we
must directly use the SME (4.2) for the density matrix ρ̂.

In the limit L0ρ̂ → −i[Ĥ0, ρ̂]/~, nth → 0, and η → 1, the stochastic Schrödinger
equation (4.24) and the stochastic quantum master equation (4.2) can be mapped
onto one another. The right eigenstates |ψj〉 of Ĥ − i~M̂ , defined in Equation (4.28),
can be used to construct the right eigenstates ρ̂µ = ρ̂i,j = |ψi〉 〈ψj | of L+N , defined
in Equation (4.11). The associated eigenvalues fulfill λµ = λi,j = −i(hi − h∗j ). Brody
and Graefe [2012] have shown that mixed stationary states can be constructed by
convex combination of eigenstates ρ̂j,j associated with real eigenvalues λj,j .

For finite temperature nth > 0, imperfect detection efficiency 0 ≤ η < 1, or
additional dissipation channels in L0, this one-to-one relation between the SSE and the
SME breaks down because the Lindblad dissipators contained in L in Equation (4.4)
mix different basis states ρ̂i,j . Note that non-Hermitian states ρ̂i,j 6=i are never mixed
with Hermitian states ρ̂i,i since, by construction of the superoperators L and N , the
condition

[(L+N )ρ̂]† = (L+N )ρ̂†

holds. Therefore, Lρ̂ preserves the Hermiticity of an initial Hermitian state ρ̂. More-
over, the eigenvalues λi,j are either real if ρ̂i,i is a Hermitian eigenstate, or they form
pairs of complex conjugate eigenvalues λi,j 6=i = λ∗j 6=i,i if they are associated with non-
Hermitian eigenstates ρ̂i,j and ρ̂j,i. The Wigner functionWρ̂ of a statistical mixture ρ
of states ρ̂i,i is an average over the Wigner functionsWρ̂i,i of the individual states con-
tained in the mixture. Therefore, negativities that may be present in the individual
Wigner functions Wρ̂i,i are ultimately averaged out to a non-negative pseudosteady-
state Wigner function in the limits η → 0 or nth →∞.

A numerical evaluation of the minimum of the pseudosteady-state Wigner func-
tion, minα[Wρ̂ps(α)] = −N(ρ̂ps) for finite temperature or imperfect photon detection
is shown in Figure 4.5. Note that imperfect photon detection both includes a loss
of photons on the way to the detector and a detection efficiency less than unity at
the detector itself. Thermal effects average out the negativity at a thermal photon
number of about nth ≈ 0.1. Hence, negative Wigner functions can be observed in the
optical frequency range, but pre-cooling or cryogenic environments are necessary for
microwave-frequency setups.

Importantly, Figure 4.5 demonstrates that imperfect photon detection is not a
major challenge. Even for a relatively low detection efficiency of η ≈ 0.25 for a
harmonic drive and η ≈ 0.5 for a parametric drive, negativities in the Wigner function
are still present. Thus, current photon detection efficiencies in the optical and infrared
range of above 88% are promising to resolve nonclassical states [Takeuchi et al., 1999;
Fukuda et al., 2011]. The single-photon detection efficiency in the microwave regime



4.7. Experimental implementation 79

a
ρ̂ss ρ̂ps

ρ̂ps ρ̂ps

b
ρ̂ss ρ̂ps

ρ̂ps ρ̂ps

0.001 0.01 0.1 1 10
nth

0

0.5

1

η

-2
0
2

P/
p
zp

f

-2 0 2
Q/xzpf

-2
0
2

P/
p
zp

f

-2 0 2
Q/xzpf

−0.12

0

0.12

0.24

−
N
(ρ̂

ps
)
an

d
W

ρ̂

0.001 0.01 0.1 1
nth

0

0.5

1

η

-2
0
2

P/
p
zp

f

-2 0 2
Q/xzpf

-2
0
2

P/
p
zp

f

-2 0 2
Q/xzpf

−0.03
0

0.15

0.3

−
N
(ρ̂

ps
)
an

d
W

ρ̂

Figure 4.5: (a) Impact of finite temperature or imperfect detection
on the pseudosteady state of a Kerr oscillator subject to a harmonic
drive. The main plot shows the minimum of the Wigner function
as a function of the thermal photon number nth and the detection
efficiency η. The smaller plots show the Wigner function Wρ̂(α) of
selected states. The origin has been shifted to the respective steady-
state expectation value 〈â〉ss. Top row: Wigner function of steady-
state ρ̂ss and pseudosteady state ρ̂ps for nth = 0 and η = 1. Bottom
row: Wigner function of pseudosteady state ρ̂ps for nth = 0.5 and η = 1
(left) and nth = 0 and η = 0.25 (right). Parameters are ∆/κ = 1.5,
|α1|2K/κ3 = 1.5, α2/κ = 0, K/κ = 2.2, ξ/

√
κ = 0.9 × exp(1.8i). (b)

Same plots for a Kerr oscillator subject to a parametric drive. Top
row: Wigner function of steady-state ρ̂ss and pseudosteady state ρ̂ps

for nth = 0 and η = 1. Bottom row: Wigner function of pseudosteady
state for nth = 0.1 and η = 1 (left) and nth = 0 and η = 0.5 (right).
Parameters are ∆/κ = 0, α1/κ = 0, α2/κ = 5.3, K/κ = 10, ξ = 0.

is still lower [Munro et al., 2005], but recently values exceeding 70% have been reached
[Besse et al., 2018; Kono et al., 2018].

4.7 Experimental implementation

Our results demonstrate that quantum oscillators with Kerr nonlinearities of the or-
der of the decay rate κ are sufficient to observe negative pseudosteady state Wigner
functions. Such nonlinear resonators can be realized in a variety of platforms, e.g.,
superconducting circuits [Rimberg et al., 2014; Heikkilä et al., 2014] and trapped ions
[Zhao and Babikov, 2008; Home et al., 2011]. Potentially, even hybrid optomechani-
cal systems could reach the required nonlinearities [Jacobs and Landahl, 2009; Zhang
et al., 2015a; Rimberg et al., 2014; Chu et al., 2018]. To ensure Γjump . Γrel, the
steady-state photon number needs to be small,

〈
â†â
〉

ss
. 1.

A first step towards an experimental realization of our proposal is to demonstrate
the nonclassicality of the pseudosteady state in a Wigner function tomography. Wal-
lentowitz and Vogel [1996] and Banaszek and Wódkiewicz [1996] described techniques
how this measurement can be performed with minimal complexity using the existing
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setup shown in Figure 4.1(b). Their protocols are based on the fact that the value
of the Wigner function W(0) at the origin of phase space can be obtained by simple
photon detection. A displacement of the mode prior to detection allows one to mea-
sure the Wigner function at different positions in phase space. A possible experiment
will consist of repeated runs of data collection, each one measuring one pixel W(α)
of the Wigner function. Each run starts with a state preparation step as described in
Section 4.3. When the generation of a nonclassical state is heralded, the tomography
step begins and the LO signal is suddenly changed to displace the state and measure
the Wigner function at the coordinate α.

Other ways to perform a Wigner function tomography have been demonstrated in
experiments with superconducting circuits or trapped ions. There, one measures the
interaction of an (artificial) atom with the nonclassical quantum state to reconstruct
the Wigner function [Lougovski et al., 2003; Hofheinz et al., 2009; Shalibo et al., 2013].

Having verified the nonclassicality of the pseudosteady state, the next experimental
step is to extract and use it. Optomechanical systems are promising candidates for this
task, because they allow one to perform on-demand state-swap operations between
their modes [Aspelmeyer et al., 2014]. An experimental protocol could consist of a
state preparation step in an optical mode of the system, followed by a state swap to
another mode if the presence of a nonclassical state is heralded. The properties of the
target mode of the state swap can be tailored to the task one wishes to perform with
the nonclassical state.

4.8 Summary

We have shown that continuous photon detection can stabilize nonclassical pseu-
dosteady states in a driven and damped Kerr nonlinear oscillator, whose steady-state
Wigner function is known to be strictly positive. The required nonlinearities and pho-
ton detection efficiencies are feasible with current technology. We have applied this
effect to prepare Schrödinger kitten states in a Kerr parametric oscillator . Making use
of the jump-rate asymmetry between the states of different parity, we demonstrated
that observation is sufficient to stabilize such nonclassical states, even in the absence
of feedback.

Viewed from a different angle, we have proposed a scheme of a heralding proto-
col to stabilize quantum states driven-dissipative nonlinear quantum systems. The
main working principle is that the photon-counting measurement induces a continu-
ous nonlinear time evolution between quantum jumps that relaxes the system towards
a pseudosteady state.

The results and figures presented in this chapter have been published in parts in
[Koppenhöfer et al., 2020a].
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Chapter 5

Quantum Synchronization

The results presented in this chapter have been published in:

M. Koppenhöfer and A. Roulet,
Optimal synchronization deep in the quantum regime: Resource and fundamental limit,
Physical Review A 99, 043804 (2019).

5.1 Motivation

Since the first observation reported by Huygens [1673] four centuries ago, synchroniza-
tion [Pikovsky et al., 2003] has provided a universal framework to capture features
shared by very different complex systems, such as chaotic electronic circuits and bi-
ological neuron networks [Pecora and Carroll, 1990; Chagnac-Amitai and Connors,
1989; Ferrari et al., 2015; Rodrigues et al., 2016]. As introduced in Section 2.6, the
essence of synchronization is the ability of a self-sustained oscillator to adjust its
rhythm when subjected to a weak perturbation.

Recently, significant progress has been made in understanding whether quantum
systems could synchronize as well. In particular, the van der Pol (vdP) oscillator, a
classic self-sustained oscillator extensively used in biology [van der Pol and van der
Mark, 1928; Rowat and Selverston, 1993; Jewett and Kronauer, 1998; Rompala et al.,
2007], has been investigated in the quantum regime of a few excitations. Lee and
Sadeghpour [2013] as well as Walter et al. [2014] demonstrated that synchroniza-
tion to a harmonic signal survives in this limit despite the inevitable presence of
quantum noise. Since then, the quantum vdP oscillator has been used to probe var-
ious features of quantum synchronization [Weiss et al., 2017], such as the role of the
number-phase uncertainty [Davis-Tilley et al., 2018] or the exciting possibility to en-
hance synchronization by applying a squeezing signal [Sonar et al., 2018]. Yet, the
infinite-dimensional Hilbert space combined with the intrinsic nonlinear and dissi-
pative dynamics have limited studies to numerical explorations of parameter space,
usually guided by an analytical description of the classical limit.

Addressing the challenge of understanding quantum synchronization beyond nu-
merics, Roulet and Bruder [2018a] have recently identified a single spin 1 as the
smallest quantum system that can host a limit-cycle oscillator. Its finite Hilbert
space of dimension 3 has already proved useful to discuss analytically the relation be-
tween entanglement and quantum synchronization [Roulet and Bruder, 2018b]. Here,
we develop an analytical framework to describe quantum synchronization, with the
aim to understand the resources on which quantum synchronization relies, the role
of quantum effects, and by which means synchronization can reach the fundamental
limit imposed by the laws of quantum mechanics. We identify the coherences between

https://dx.doi.org/10.1103/PhysRevA.99.043804
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energy levels as the resource of quantum synchronization. As a consequence, we will
be able to define an upper boundary of the synchronization region as a function of
the signal strength, which extends the well-known Arnold tongue to a snake-like split
tongue. Moreover, we will introduce a novel type of synchronization blockade due to
quantum interference effects.

To put the spin-1 platform on solid grounds, the first question we address is
whether this minimal system with no classical analogue is actually complex enough
to capture all the features of quantum synchronization that appear in classically-
inspired systems like the vdP oscillator. We answer this question by bridging the gap
between the two architectures, demonstrating that a vdP oscillator operating deep
in the quantum regime can be represented in the spin-1 platform, even though the
spin phase space lives on a sphere and does not correspond to a position-momentum
representation. This result allows us to connect with previous numerical findings ob-
tained on the harmonic-oscillator platform, and to further improve on them thanks
to the analytical accessibility of the spin-1 system. In particular, we find that, while
squeezing indeed does improve the phase locking of a vdP limit cycle, an even better
performance can be achieved by additionally modifying the semiclassical component
of the signal, which is the equivalent of a harmonic drive for a spin system. We prove
that this signal yields the optimal synchronization that is achievable for a vdP limit
cycle.

We then move on to the equatorial limit cycle which was originally used to demon-
strate phase locking to a semiclassical signal [Roulet and Bruder, 2018a]. Despite being
insensitive to a squeezing signal, this pure-state limit cycle is shown to outperform
the optimally-driven vdP oscillator, highlighting the complex interplay between the
different quantum resources.

Finally, we take full advantage of the spin-1 Hilbert space and identify the max-
imum synchronization that can be achieved without imposing any limit cycle nor a
specific form of the signal. This fundamental limit is shown to be an asymptotically
strict bound that requires (i) a statistical mixture of energy eigenstates in the limit
cycle, i.e., a larger amplitude uncertainty than that of a pure state, and (ii) a breaking
of the symmetry between the extremal spin eigenstates. Note that the related ques-
tion of optimizing the signal to maximize the synchronization of a noisy classical limit
cycle is also a subject of research in classical nonlinear dynamics [Pikovsky, 2015].

This chapter is structured as follows. In Section 5.2, we develop the framework
to describe quantum synchronization, which will provide a consistent method to for-
malize how large the signal strength can be without becoming comparable to the
stabilization of the limit cycle. We discuss in Section 5.3 how this result allows us to
extend the notion of the Arnold tongue. Our framework prepares the ground to quan-
titatively compare the synchronization behavior of different limit-cycle oscillators. In
Sections 5.4 and 5.5, we investigate the spin-1 implementations of the quantum vdP
oscillator and of the equatorial limit cycle, respectively. This discussion will lead to
a bound on the maximum synchronization that can be achieved in a spin-1 system,
which is derived in Section 5.6. The effect of interference-based quantum synchro-
nization blockade is discussed in Section 5.7. Finally, we discuss the prospects of an
experimental observation of quantum synchronization in Section 5.8 and conclude in
Section 5.9.
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5.2 Framework

As introduced in Section 2.6.2, a limit-cycle oscillator is an autonomous active sys-
tem, characterized by a free Hamiltonian Ĥsys, that undergoes a stable periodic motion
represented by a closed curve in phase space. The stability of this natural rhythm is
ensured by the presence of amplitude-dependent gain and damping via a dissipative
coupling to an environment. In contrast to a coherent drive, such a source of energy
does not imprint any preferred phase on the oscillation. As a consequence, an ex-
ternal perturbation – the signal – can freely adjust the phase of the periodic motion
without affecting the amplitude. This phenomenon is called synchronization. A dis-
cussion of classical synchronization including an overview of different synchronization
phenomena has been given in Section 2.6.2.

We now develop a framework that generalizes the notion of synchronization to
the quantum regime. We consider the synchronization of a limit-cycle oscillator to a
coherent external signal of strength ε that is described by a Hamiltonian Ĥext. This
scenario can be modeled by a QME of the form

d

dt
ρ̂ = L0ρ̂−

i

~
ε
[
Ĥext, ρ̂

]
, (5.1)

where ρ̂ is the density matrix of the system. The superoperator L0 defines the limit
cycle of the system. We require that Equation (5.1) has a unique steady-state so-
lution. This generic equation is the starting point for any study of synchronization
of a single limit-cycle oscillator in the quantum regime. Actually, it also describes
the synchronization of multiple oscillators under a mean-field approximation [Lud-
wig and Marquardt, 2013; Lee and Sadeghpour, 2013; Lee et al., 2014]. Typically,
Equation (5.1) is simulated numerically for a specific limit cycle and a specific signal,
for instance, a quantum vdP limit cycle subject to a squeezing signal [Sonar et al.,
2018]. We will however leave L0 and Ĥext unspecified for now and instead derive
some general properties that must be fulfilled by the QME (5.1) in order to describe a
limit-cycle oscillator. In our examples, we will focus for simplicity on a spin-1 system.
However, we stress that the methods we introduce in the rest of this section are not
tied to this particular platform, but can be readily applied to limit-cycle oscillators
living in a different phase space, e.g., oscillator-based systems. An overview of the
corresponding results for an oscillator-based system is given in Appendix B.

5.2.1 Phase space and phase variable

As a first step, we have to introduce the notion of a phase that parametrizes the
dynamics of the limit-cycle oscillator. Following Roulet and Bruder [2018a], we employ
the Husimi Q-function, introduced in Section 2.3, as a phase portrait of the limit-cycle
oscillator. The Husimi function exists both for oscillator-based systems, such as the
quantum vdP oscillator, and for spin-based systems, see Section 2.3. In the case of a
spin-1 system, it is defined as follows:

Qρ̂(θ, φ) =
3

4π
〈θ, φ| ρ̂ |θ, φ〉 ,

where the angles θ ∈ [0, π) and ϕ ∈ [0, 2π) define coordinates on the surface of
a sphere. The states |θ, ϕ〉 are the spin-coherent states introduced in Appendix A.2
[Radcliffe, 1971; Arecchi et al., 1972], which precess over time at the natural frequency
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ω0 set by the free Hamiltonian

Ĥsys = ω0Ŝz , (5.2)

i.e., |θ, φ〉 → |θ, φ+ ω0t〉. Here, the z-axis has been chosen as the spin quantization
axis and Ŝz is the corresponding spin-component operator. This oscillation is illus-
trated in Figure 5.1(a). The longitude angle φ thus plays the role of the phase variable
at the core of the synchronization formalism, which parametrizes the oscillation along
the closed curve in phase space.

From the phase-space representation, we can derive the phase distribution Pρ̂ of
a state ρ̂ by integrating out the amplitude degree of freedom, i.e., the angle θ in the
case of a spin-1 system,

Pρ̂(φ) =

∫ π

0
dθ sin(θ)Qρ̂(θ, φ) . (5.3)

Equipped with the phase distribution Pρ̂(φ), we define a phase rotation by an angle
α as the transformation R̂(α) that changes the state ρ̂ to ρ̂′ = R̂(α)ρ̂R̂†(α) such that

Pρ̂′(φ) = Pρ̂(φ− α) .

For a spin-1 system, this transformation is achieved by the operator describing rota-
tions around the quantization axis set by the free Hamiltonian Ĥsys,

R̂(α) = e−iαŜz/~ . (5.4)

A detailed summary of the corresponding results for oscillator-based systems, such
as the quantum vdP oscillator [Lee and Sadeghpour, 2013; Walter et al., 2014], is
given in Appendix B. For these systems, the free Hamiltonian is Ĥsys = ~ω0â

†â and
the notion of a phase can be defined by decomposing the argument of the Husimi
function Qρ̂(α) in polar coordinates, α = reiφ.

5.2.2 Limit-cycle stabilization

Having defined the notion of a phase, we can now derive conditions on the form of the
QME (5.1) that must be fulfilled to describe a limit-cycle oscillator. These conditions
will also define the set of possible limit-cycle states.

The limit cycle is specified by the superoperator L0 in Equation (5.1), which
contains all terms that are present even if no signal is applied, ε = 0, and has the
form

L0ρ̂ = − i
~

[
Ĥsys, ρ̂

]
+

N∑
j=1

γjD[Ôj ]ρ̂ , (5.5)

This dynamics is composed of the oscillation at the natural frequency ω0, generated by
the free Hamiltonian Ĥsys, and of a set of N Lindblad dissipators D of the form (2.12),
which represent gain and loss induced by the environment. The limit-cycle state is
the steady state of the dissipative map L0. Different choices of coupling operators Ôj
and their corresponding rates γj define where and how the limit cycle is stabilized in
phase space. At this point, the fact that a limit cycle can be stabilized in infinitely
many ways seems to seriously hinder any attempt to proceed further without focusing
on a particular limit cycle. However, we now show that the properties of a limit cycle
impose strong constraints on the coupling to the environment, which allows us to
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Figure 5.1: Illustration of the spherical phase space of a spin-1 sys-
tem. (a) Spin-coherent state |θ, φ〉 = |1.5, 1〉. The green arrow indi-
cates its direction of oscillation in phase space. (b) Equatorial limit
cycle |0〉 considered in Sections 5.3 and 5.5. (c) Limit cycle of the
van der Pol oscillator deep in the quantum regime, considered in Sec-
tion 5.4. (d) Energy-level structure of a spin-1 system (center), signal
components and corresponding coefficients ti,j of the signal Hamilto-
nian Ĥext (right), and dissipative Lindblad operators Ôj that describe
unidirectional transitions between two levels (left). The coupling op-
erators are invariant under rotations R̂z(α) = e−iαŜz/~ up to a phase
factor indicated in the bottom row. Any linear combination of opera-
tors within the same column yields again a valid dissipative coupling
operator.

narrow down the class of allowed operators and leads to a common structure for valid
limit-cycle states.

The defining feature of a limit cycle is the ability to stabilize the amplitude of os-
cillation while leaving the phase completely free. The phase is then linearly increasing
in time at the natural frequency ω0 and can be readily adjusted by a weak external
signal Ĥext, possibly to a different frequency. We postpone the open question of how
strong the signal can be without affecting the amplitude of oscillation to Section 5.2.6,
and focus here instead on the necessary requirement for the phase to be free before
applying any signal.

The absence of any phase preference in the limit-cycle state implies that the dy-
namics generated by L0 must be invariant under phase rotations R̂(α) defined in
Equation (5.4). This is achieved by requiring that the Hamiltonian is invariant under
phase rotations,

R̂(α)ĤsysR̂
†(α) = Ĥsys ,
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Figure 5.2: Overview of the dissipative stabilization mechanisms of
spin-1 limit cycles considered in this chapter. (a) Stabilization of the
equatorial limit cycle |0〉, discussed in Section 5.5, by the operators
Ôg = Ŝ+Ŝz and Ôd = Ŝ−Ŝz. (b) Stabilization of the van der Pol limit
cycle, discussed in Section 5.4, by the operators Ôg = ŜzŜ+−Ŝ+Ŝz/

√
2

and Ôd = Ŝ2
−/
√

2. (c) Asymmetric limit-cycle stabilization discussed
in Section 5.6. The dissipative transition Ôd′ = ŜzŜ− has been added
to the stabilization of the equatorial limit cycle shown in (a). The gain
and relaxation rates associated with the operators Ôg, Ôd, and Ôd′ are
γg, γd, and γd′ , respectively.

and that the coupling operators Ôj are invariant up to a phase factor,

R̂(α)ÔjR̂
†(α) = eiνj(α)Ôj ,

which does not play any role because of the incoherent nature of the coupling to the
environment. Hence, the set of allowed coupling operators, shown in Figure 5.1(d), is
given by all operators that satisfy 〈m| Ôj |n〉 6= 0 only for a fixed nonzero difference
d = m− n,

〈m| Ôj |n〉 ∝ δm−n,d , (5.6)

where |n〉 ≡ |S, n〉 denotes an eigenstate of Ŝz as defined in Appendix A.2. Phys-
ically, the operators Ôj correspond to incoherent population transfers between the
eigenstates of Ĥsys, which can be combined to stabilize the limit-cycle state of choice
without imposing any phase during the relaxation. Note that we are intentionally
omitting diagonal operators Ôj spanned by Ŝz and Ŝ2

z in Figure 5.1(d), which would
in principle be allowed, because their effect is to generate dephasing without con-
tributing to the amplitude stabilization. Thus, admitting those operators will only
degrade synchronization. An overview of the specific spin-1 limit-cycle stabilization
mechanisms considered in this chapter is given in Figure 5.2.

An important consequence of the form of the coupling operators is that the dy-
namics of the limit cycle leads to decoherence in the energy eigenbasis, yielding a
diagonal limit-cycle state that is invariant under phase rotations,ρ+1,+1 0 0

0 ρ0,0 0
0 0 ρ−1,−1

 ,

where 1 ≥ ρk,k ≥ 0 and
∑

k ρk,k = 1. In the following, this feature will be key to
understand the quantum-mechanical resources on which synchronization relies.
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5.2.3 External signal

Now that we have identified the general form of a limit cycle, the remaining ingredient
of Equation (5.1) is the external signal which is applied to synchronize the oscillator.
In general, the signal Hamiltonian Ĥext is a combination of all coherent transitions
between the energy eigenstates. In a spin-1 system, there are three such transitions
and the corresponding Hamiltonian reads as follows in a frame rotating at the signal
frequency ωext and under a rotating-wave approximation:

Ĥext = ~
(
t0,1ŜzŜ+ − t−1,0Ŝ+Ŝz + t−1,1Ŝ

2
+ + H.c.

)
. (5.7)

As illustrated in Figure 5.1(d), Ĥext consists of two individual signal components
applied to the transitions |−1〉 ↔ |0〉 and |0〉 ↔ |1〉, and a squeezing component
addressing directly the transition |1〉 ↔ |−1〉. The complex parameters tn,m describe
the relative phases and amplitudes of these components. For instance, a semiclassical
signal of the form 2ε[cos(ϕ)Ŝx + sin(ϕ)Ŝy] corresponds to the first two transitions
being equally driven, t0,1 = t−1,0 = eiϕ/2, and no squeezing component, t−1,1 = 0.
Note that the signal Hamiltonian is completely off-diagonal in the spin basis,

〈m| Ĥext

∣∣m′〉 ∝ 1− δm,m′ . (5.8)

Working in a rotating frame implies that Ĥsys now takes the form

Ĥsys = ∆Ŝz ,

where ∆ denotes the detuning between the natural frequency of oscillation and the
signal frequency,

∆ = ω0 − ωext . (5.9)

5.2.4 Perturbation theory

Having fully characterized the spin-1 system in terms of the available limit cycles and
signals, we now connect the two components. By definition, synchronization can only
be achieved for a signal strength ε small enough such that the original limit cycle is
only weakly perturbed [Pikovsky et al., 2003]. Going beyond this regime would affect
not only the phase of the oscillation but also its amplitude, and thus the limit cycle
would be deformed. In the following, we refer to this undesired regime as forcing.

Inspired by the fact that the signal should be a small perturbation, we perform an
expansion of the density matrix in terms of the signal strength ε,

ρ̂ =

∞∑
k=0

εkρ̂(k) . (5.10)

The precise definition of a “small” signal is derived in Section 5.2.6. For now, it is
sufficient to note that by counting powers of ε we can formally split the state ρ̂ into
the limit-cycle state, characterized by ρ̂(0), and higher-order corrections ρ̂(k), k ≥ 1,
stemming from the signal. As we will show below, all features of quantum synchro-
nization are captured by the first-order term ρ̂(1). Inserting the expansion (5.10) into
the quantum master equation (5.1) and collecting orders of ε, we obtain a set of
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recursive differential equations [Li et al., 2014],

d

dt
ρ̂(k) = L0ρ̂

(k) + (1− δk,0)Lextρ̂
(k−1) , (5.11)

where each term of the density-matrix expansion is normalized according to

Tr
[
ρ̂(k)

]
= δk,0 .

The superoperator Lext contains the signal Hamiltonian,

Lextρ̂ = − i
~

[
Ĥext, ρ̂

]
. (5.12)

To understand Equation (5.11) further, we note that the QME (5.1) is a linear first-
order differential equation for the density matrix ρ̂. Therefore, the superoperator L0

can be represented as a matrix acting on a vector

ρ =

(
ρpop

ρcoh

)
.

of density matrix elements, where ρpop and ρcoh are vectors containing the popula-
tions and coherences of the density matrix ρ̂, respectively. The property (5.6) of the
Lindblad operators gives rise to a block-diagonal structure of the matrix representing
L0, (

Lpop
0 0

0 Lcoh
0

)
,

where the subblocks Lpop
0 and Lcoh

0 act only on the populations ρpop and the coherences
ρcoh of the density matrix, respectively. The subblock Lpop

0 is negative semidefinite
and its zero eigenvalue is associated with the limit-cycle state ρ̂(0). The subblock Lcoh

0

has complex eigenvalues with negative real parts that lead to a decay of the coherences
to zero. The signal term Lextρ̂

(k−1) constitutes an inhomogeneity of the differential
equation and is represented by the vector

ρ
(k−1)
ext =

(
ρ

pop,(k−1)
ext

ρ
coh,(k−1)
ext

)
.

Its entries depend on the density-matrix expansion coefficient ρ̂(k−1) and read as

〈m| Lextρ̂
(k−1) |n〉 = −i

∑
j

[
〈m| Ĥext |j〉 ρ(k−1)

j,n − ρ(k−1)
m,j 〈j| Ĥext |n〉

]
. (5.13)

To leading order k = 0, Equation (5.11) describes the situation without any signal
being applied, i.e., the limit-cycle state. As discussed in Section 5.2.2, the superoper-
ator L0 relaxes the system to a diagonal steady state

ρ̂(0) =

∗ 0 0
0 ∗ 0
0 0 ∗

 , Tr
[
ρ̂(0)
]

= 1 , (5.14)

where the stars represent non-negative entries that depend on the specific form of the
limit cycle.
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The next order k = 1 accounts for the fact that a weak external signal is applied
to synchronize the limit-cycle oscillator. Using the condition (5.8) on the form of
the external signal and the diagonal structure (5.14) of ρ̂(0), we find that Lextρ̂

(0)

constitutes an inhomogeneity only for the equation of motion of the coherences, but
it vanishes for the populations,

d

dt

(
ρ

(1)
pop

ρ
(1)
coh

)
=

(
Lpop

0 0
0 Lcoh

0

)
·

(
ρ

(1)
pop

ρ
(1)
coh

)
+

(
0

ρ
coh,(0)
ext

)
.

Thus, the first-order expansion coefficient ρ̂(1) is the result of a trade-off between
the signal part Lextρ̂

(0), which aims to build up coherences in ρ̂(1), and the limit-cycle
stabilization L0ρ̂

(1), which tries to decrease them towards a completely dephased limit-
cycle state. Thus, the coherences of ρ̂(1) are given by

ρ
(1)
n,m 6=n = −

∑
j,k

(
Lcoh

0

)−1

n,m;j,k
〈j| Lextρ̂

(0) |k〉 . (5.15)

The populations of ρ̂(1) are zero because the equation of motion of the populations
the same as for the populations ρ(0)

n,n of the limit-cycle state, but the normalization
condition now reads Tr[ρ̂(1)] = 0. Hence, we find a purely off-diagonal first-order
correction term

ρ̂(1) =

0 ∗ ∗
∗ 0 ∗
∗ ∗ 0

 , (5.16)

where the stars represent complex entries compatible with the condition ρ̂(1)† = ρ̂(1).
This analytical result demonstrates that quantum synchronization achieves phase lo-
calization by building up coherences and leaving populations untouched. The latter
is equivalent to preserving the closed curve of the limit cycle in phase space.

As the signal strength ε is increased, higher-order corrections become relevant and
all matrix elements are nonzero in general,

ρ̂(k≥2) =

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 , Tr
[
ρ̂(k≥2)

]
= 0 . (5.17)

Now, the coherences driven to first order in ε give rise to a second-order correction
of populations due to the signal Hamiltonian Ĥext, i.e., the signal is moving the limit
cycle away from its original position in phase space. This corresponds to the oscillator
being forced. In the following, we will restrict the study to the synchronization regime,
where higher-order corrections can be neglected,

ρ̂ ≈ ρ̂(0) + ερ̂(1) . (5.18)

A condition on the signal strength ε that ensures the validity of this approximation
is derived below in Section 5.2.6.

5.2.5 Synchronization measure

Before continuing our discussion of the quantum synchronization framework, we in-
troduce the specific measure of quantum synchronization that we will use to compare
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the synchronization of different limit-cycle oscillators and signals. An overview of
various quantum synchronization measures proposed in the literature has been given
in Section 2.6.4. Note that, although we will focus on a specific quantum synchro-
nization measure in the following, the general framework does actually not rely on
our particular choice.

We will quantify synchronization using the marginal distribution of the phase of
the oscillator, Pρ̂(φ), which has already been defined in Equation (5.3). Since the
dissipative source of energy does not favor any phase φ of the oscillator, the intrinsic
quantum noise inevitably leads to phase diffusion such that the limit-cycle state ρ̂(0)

has a uniform phase distribution Pρ̂(0) = 1/2π, similar to a noisy classical limit-cycle
oscillator. Therefore, to measure phase locking of the limit-cycle oscillator to an
external signal, we define the shifted phase distribution

Sρ̂(φ) = Pρ̂(φ)− 1

2π
, (5.19)

which is identically zero if and only if the distribution Pρ̂(φ) is uniform, i.e., if no
phase preference is developed.

Expressed in terms of a spin-1 density matrix, the shifted phase distribution has
the form

Sρ̂(φ) =
3

8
√

2
|ρ1,0 + ρ0,−1| cos[φ+ arg(ρ1,0 + ρ0,−1)]

+
1

2π
|ρ1,−1| cos[2φ+ arg(ρ1,−1)] , (5.20)

where ρn,m = 〈n| ρ̂ |m〉 are the matrix elements of the state ρ̂. A similar formula
containing only the cos(φ) term has been derived in the specific case of a limit-cycle
defined in a Kerr nonlinear oscillator by Lörch et al. [2016]. Following Lee and Sadegh-
pour [2013], Roulet and Bruder [2018a], and Lörch et al. [2017], we use the maximum
of the shifted phase distribution to obtain a single-number measure of synchronization,

S(ρ̂) = max
φ∈[0,2π)

Sρ̂(φ) . (5.21)

Note that Sρ̂(φ) depends only on the coherences of ρ̂ and thus, since we are restricting
ourselves to the synchronization regime (5.18), on the first-order correction ρ̂(1). Also
note that the prefactor of the cos(φ) term shows that building up coherences is not a
sufficient condition to break the rotational invariance of the limit-cycle state. Inter-
ference effects between the coherences ρ1,0 and ρ0,−1 are expected to either enhance
or hinder the synchronization behavior. We address this point in Section 5.7 where
we discuss the possibility of synchronization blockade, despite the energy levels of the
spin-1 system being equally spaced.

Combining Equations (5.18) and (5.20), we find that the phase localization in-
creases linearly proportional to the signal strength, Sρ̂(φ) = εSρ̂(1)(φ). On the other
hand, we have shown that ε cannot be increased indefinitely as the system will even-
tually leave the perturbative regime of synchronization. When comparing the ability
of different limit cycles to synchronize to different signals, we thus need a general rule
how to set the value of ε while ensuring that the signal remains a weak perturbation.
In the spirit of all past studies, which fixed both the signal and the limit cycle, a nat-
ural guess would be that normalizing every expression with respect to ε is sufficient
to compare different situations. However, this approach cannot be reliable for two the
following reasons.
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First, it neglects the dissipative stabilization of the limit-cycle. The relation

D[cÔj ]ρ̂ = |c|2D[Ôj ]ρ̂ ,

where c is a complex prefactor, allows us to rescale the dissipative transition rates by
absorbing prefactors into the dissipative transition operators. Even though D[Ôj ]ρ̂
and D[cÔj ]ρ̂ describe the same transitions between energy levels, the corresponding
limit-cycle oscillators will in general differ in their susceptibility to external signals.
This has to be taken into account when determining the signal strength ε.

Second, the signal Hamiltonian (5.7) contains the parameters ti,j , which deter-
mine the relative strength of the signal on each individual transition as shown in Fig-
ure 5.1(d). An increase in ε can be compensated by a corresponding decrease of the
parameters ti,j without changing the effective signal Hamiltonian εĤext at all. Thus,
we are required to derive a dimensionless parameter η that defines the drive strength
ε and ensures the validity of the first-order approximation (5.18) in full generality.
This is the subject of the next section.

5.2.6 Determining the signal strength

By direct analogy with a classical system, one way to quantify the deformation of a
limit cycle is to monitor its change in energy. If the signal becomes more than a per-
turbation, one expects energy to be pumped into the system such that the amplitude
of the oscillation is modified and the limit cycle is shifted in phase space. Following
this reasoning, the small parameter η would then be proportional to the change in the
average occupation of the energy levels, which reads for the spin system

pavg(ε) = Tr
[
Ŝz

(
ρ̂(ε)− ρ̂(0)

)]
. (5.22)

A bound on η ∝ pavg(ε) will then implicitly define the maximum admissible signal
strength.

As a first sanity check, this deformation measure indeed vanishes in the pertur-
bative regime, where it amounts to evaluate the average occupation of the purely off-
diagonal correction ρ̂(1) given in Equation (5.16). To test it further and check whether
it properly detects all types of deformations that can be induced by the signal, we
consider a subclass of dissipative stabilization mechanisms, shown in Figure 5.2(a),
which relax the system to the equatorial state ρ̂(0) = |0〉 〈0|. The stabilization can be
obtained by the two Lindblad operators Ôg = Ŝ+Ŝz and Ôd = Ŝ−Ŝz, where the ratio
γg/γd of the associated transition rates can be freely adjusted to modify the response
of the limit cycle to perturbations. The equatorial limit cycle will be discussed in more
detail in Section 5.5. For the rest of this section, it is sufficient to restrict ourselves
to a semiclassical signal, i.e., t0,1 = t−1,0 and t−1,1 = 0.

For the balanced case γg = γd, Figure 5.3(a) shows that the signal attracts the
phase φ towards 0 and π without leaving the equator, which appears to be a syn-
chronized state. To confirm this visual impression, we track the deformation measure
pavg(ε), which stays at zero for the considered range of signal strengths. It thus ap-
pears that the phase localization is indeed achieved by synchronizing the oscillator to
the applied signal. Yet, the following two intriguing features do not agree with this
interpretation.

First, we have derived in Equation (5.20) that a synchronized distribution with two
stable phases can only emerge by building up coherence between the extremal states,
i.e., ρ−1,1 6= 0, which in turn requires some initial population in the states |±1〉.
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Figure 5.3: Shifted phase distribution Sρ̂(φ) and deformation mea-
sures pavg(ε) and pmax(ε) as a function of the signal strength ε for
the equatorial limit cycle discussed in Section 5.2.6 with (a) balanced
rates γd/γg = 1 and (b) imbalanced rates γd/γg = 10. In both cases, a
resonant semiclassical signal is applied, i.e., t0,1 = t−1,0, t−1,1 = 0, and
∆ = 0. The gray background in the lower plots indicates the regime
of forcing according to Equation (5.25), ε(η) = ηγgγd/

√
γ2

g + γ2
d, eval-

uated for η = 0.1. The plots of the Q-function show the state of the
system for different values of the signal strength.

However, this is not possible for the present limit cycle, where only the equatorial
state is populated. To be specific, for a semiclassical signal and the equatorial limit-
cycle state ρ̂(0) = |0〉 〈0|, Equation (5.13) predicts that the coherences ρ1,0 and ρ0,−1

will be built up by the signal, but the coherence ρ1,−1 will decay to zero,

〈1| Lextρ̂
(0) |0〉 = −i

√
2t0,1 ,

〈0| Lextρ̂
(0) |−1〉 = +i

√
2t−1,0 ,

〈1| Lextρ̂
(0) |−1〉 = 0 .

Thus, any synchronized phase distribution of this limit cycle must have only a single
peak.

Second, if one were to extend the plot range to even larger signal strength, the
deformation measure would actually be found to vanish for any value of ε. This
triggers the suspicion that the measure pavg(ε) may not play its role of signaling
the transition from the perturbative to the forcing regime for the limit cycle under
consideration. Its failure is based in the fact that the expectation value adds up the
changes ρk,k(ε) − ρ

(0)
k,k of different populations. This opens the door for cancellation

effects, which make the measure pavg(ε) insensitive to certain deformations of the limit
cycle.

To address this issue, we consider the more fine-grained measure

pmax(ε) = max
n∈{−1,0,1}

∣∣∣ρn,n(ε)− ρ(0)
n,n

∣∣∣ , (5.23)

which tracks the maximum change of the individual populations instead of the aver-
aged value pavg(ε). Taking the absolute value of the change of each population rules
out cancellation effect, and focusing only on the maximum change avoids double-
counting. As shown in Figure 5.3(a), this measure is able to detect that the emergence
of the two peaks in the phase distribution belongs to the forcing regime. Indeed, the
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onset of the peaks is found to be accompanied by a transfer of population from the
equatorial state to the extremal states, which can only be achieved by higher-order
contributions (5.17) in the perturbation expansion of ρ̂. However, because of the sym-
metry of both the limit cycle γd = γg and the semiclassical signal t0,1 = t−1,0, this
transfer is evenly distributed between the extremal states, which explains why the
average occupation pavg(ε) remained blind to this deformation.

These results imply that the balanced limit cycle γg = γd is unable to synchronize
to a semiclassical signal. Physically, this follows from the fact that, to first order, the
coherences ρ1,0 and ρ0,−1 are generated with equal amplitudes but opposite sign, and
therefore counteract each other in attempting to localize the phase distribution (5.20).
This effect is discussed in more detail in Section 5.7. On the other hand, in the
unbalanced case, one of the coherences is able to take the lead and a single-peak
phase distribution emerges as illustrated in Figure 5.3(b). This is in agreement with
the results reported by Roulet and Bruder [2018a]. Moreover, when the signal strength
is further increased, the limit cycle is now clearly deformed towards one of the poles
when it enters the forcing regime, before it comes back to the equator for very large
signal strength and forms the same double-peaked distribution that has already been
found in the balanced case.

These results demonstrate the difficulty of measuring the deformation of a quan-
tum limit cycle based on variations of the populations, which are captured by the
second-order term ρ̂(2). In fact, there remain some combinations of limit cycle and
signal for which even the refined measure pmax(ε) is unable to identify the transition
to the forcing regime. To this end, we consider a quantum vdP limit-cycle oscillator,
which is defined by the dissipative coupling operators Ôg = ŜzŜ+ − Ŝ+Ŝz/

√
2 and

Ôd = Ŝ2
−/
√

2 with the respective rates γg and γd, as shown in Figure 5.2. The vdP
system will be discussed in more detail in Section 5.4. We consider a signal where
the ratio between the semiclassical signal components can be adjusted, t0,1 = r and
t−1,0 = 1/

√
2, but there is no squeezing signal, t−1,1 = 0.

As shown in Figure 5.4, there is a range of values 1/
√

2 . r . 5.5 for which
the deformation measure pmax(ε) is nonmonotonous and has a local maximum, then
decreases towards zero, before it increases strongly and converges to a constant value
in the limit ε → ∞. This implies that for a threshold value η smaller than the local
maximum, there are up to three solutions εi that satisfy η = pmax(εi). For a very
pronounced local maximum, e.g., the dashed green line in Figure 5.4, the measure
provides a clear indicator that the limit cycle is deformed to an intermediate state
for ε & min{εi}, before it converges to another deformed state in the strongly forced
regime ε� max{εi}. In this situation, εmax = min{εi} is straightforwardly identified
as the maximum signal strength allowed for synchronization. However, the value of
the local maximum decreases with r, and in particular for r ≈ 5 the peak almost
vanishes, as shown by the dotted red line in Figure 5.4. This means that for any fixed
value of the threshold η there is a value of r such that the first deviation of pmax(ε)
is not detected, without having a physical argument that it does not belong to the
forcing regime. Consequently, the measure pmax(ε) fails to give a definite answer for
the transition to the forcing regime.

The physical reason for this behavior is that the energy in the finite-dimensional
Hilbert space of a spin system is bounded, i.e., the amplitude cannot simply grow
indefinitely in phase space when the signal strength is increased. With increasing
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Figure 5.4: (a) Deformation measure pmax(ε, r) for a van der Pol
limit cycle as a function of the signal strength ε and the ratio r =
t0,1/
√

2t−1,0 of the amplitudes of the semiclassical signal components.
Squeezing is switched off, t−1,1 = 0. (b) Cuts pmax(ε) for fixed values
r = 0.5, 2.5, 4, and 9, indicated by the corresponding horizontal lines
in (a). Parameters are γd/γg = 100 and ∆ = 0.

signal strength ε, the vdP limit cycle deep in the quantum regime,

1

3

0
1

2

 ,

is deformed to the signal-dependent state

1

2 + 4r4

 2r2
√

2r(1− 2r2)
1√

2r(1− 2r2) 1− 2r2 + 4r4

 , (5.24)

which is obtained in the limit ε� γd � γg.
For r ≤ 1/

√
2 and a small signal strength ε . γg, the t−1,0 signal component

dominates and transfers population from the state |−1〉 to the state |0〉, until a balance
ρ−1,−1 ≈ ρ0,0 ≈ 1/2 is reached for γg < ε < γd. This is the reason for the first plateau
of the solid blue line in Figure 5.4(b). Since the dissipation rate γd is still the largest
rate, the state |+1〉 is almost unpopulated. For an even larger signal strength ε ≈ γd,
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the signal overcomes dissipation and population is transferred from the states |−1〉
and |0〉 to the state |+1〉, until the state (5.24) is reached in the limit ε� γd, with a
distribution ρ0,0 ≥ ρ−1,−1 ≥ ρ1,1 that is determined by the signal.

In the opposite limit r � 1/
√

2, the t0,1 signal component dominates. If the signal
strength overcomes the gain rate, ε � γg, the signal creates a balance ρ0,0 ≈ ρ1,1,
which leads to an effective depletion of both levels because of the dissipative transition
|1〉 → |−1〉, i.e., we find ρ−1,−1 → 1 and ρ1,1 = ρ0,0 → 0. This is shown by the dash-
dotted gray line in Figure 5.4(b).

For intermediate values, r & 1/
√

2, a crossover between these two scenarios occurs.
A weak signal ε� γg attempts to equalize the populations ρ0,0 and ρ−1,−1 such that
population is dominantly transferred from |−1〉 to |0〉. For an intermediate signal
strength γg < ε < γd, the signal aims to equalize ρ0,0 and ρ1,1, thus, population
is now dominantly transferred from the states |−1〉 and |0〉 to the state |1〉. This
causes the dip in the dotted red and dashed green curve in Figure 5.4(b). Because
of the dissipative transition |+1〉 → |−1〉, the levels |0〉 and |1〉 are depleted and the
population of the state |−1〉 increases, such that the system approaches the state (5.24)
with a distribution ρ−1,−1 ≥ ρ1,1 ≥ ρ0,0 in the limit ε � γd, γg. In conclusion, for
r > 1/

√
2, the limit cycle is deformed twice, but the first redistribution process

|−1〉 → |0〉 becomes less pronounced if r increases. Therefore, this redistribution
of population in the forcing regime can be very hard to distinguish from the initial
limit-cycle state.

To circumvent this problem, we propose to avoid any coarse-grained deformation
measure based on the change of populations contained in ρ̂(2). Instead, we derive
the dimensionless parameter η of the perturbation expansion (5.18) explicitly using
only the first-order correction term ρ̂(1). To this end, we require that the first-order
correction in Equation (5.18) remains small with respect to the leading order term,

||ερ̂(1)|| � ||ρ̂(0)|| .

Here ||Ô|| =

√
Tr(Ô†Ô) stands for the Hilbert-Schmidt norm in the operator space,

also known as the Liouville space [Fano, 1957]. In practice, we impose a fixed threshold
value 0 ≤ η � 1 on the inequality and set

ε = η
||ρ̂(0)||
||ρ̂(1)||

. (5.25)

The parameter η is precisely the expansion parameter that needs to be small to ensure
the validity of Equation (5.18). It is also the key ingredient that will allow us to
compare all sorts of signals and limit cycles, and we end this section by discussing the
physical interpretation of Equation (5.25).

The numerator

||ρ̂(0)|| =
√∑

m

∣∣∣ρ(0)
m,m

∣∣∣2 (5.26)

is similar to the inverse participation ratio used to characterize Anderson localiza-
tion [Wegner, 1980; Evers and Mirlin, 2000], or to the effective dimension that de-
termines the equilibration of a closed quantum system undergoing unitary dynam-
ics [Linden et al., 2009; Gogolin and Eisert, 2016]. In the three-dimensional Hilbert
space of a spin 1, the norm ||ρ̂(0)|| takes values between

√
1/(2S + 1) =

√
1/3, for a

limit cycle that is a uniform incoherent mixture of all energy eigenstates, and 1, for a
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limit cycle that consists of a single state. It captures the fact that a limit cycle with
a wider spread of amplitude in phase space is more susceptible to deformations than
a narrow limit cycle formed by a single pure state.

The denominator is most easily interpreted by assuming that the subblock Lcoh
0 is

diagonalizable, i.e., that its left and right eigenstates associated with the eigenvalue Γl,
µ̌l and µ̂l, respectively, form an orthonormal basis spanning the space of coherences.
More details of this basis have been given in Section 4.4.1. In the following, we will
call the eigenstates µ̂l the “eigencoherences” of the system. We now expand the term
Lextρ̂

(0) in this basis,

Lextρ̂
(0) =

∑
l

glµ̂l , (5.27)

gl = Tr[µ̌†l (Lextρ̂
(0))] . (5.28)

It is possible to restrict the sum to the basis states of the coherences, since the popu-
lations of Lextρ̂

(0) are zero. Inserting this result into Equation (5.15), we find

ρ̂(1) = −
∑
l

µ̂l
gl
Γl

,

which allows us to rewrite the norm as follows:

||ρ̂(1)|| =

√√√√∑
l,k

gl
Γl

g∗k
Γ∗k

Tr(µ̂†kµ̂l) . (5.29)

For the examples discussed at the beginning of this section, i.e., the dissipative mech-
anisms stabilizing the equatorial state |0〉 and the van der Pol limit cycle deep in the
quantum regime γd � γg, the superoperator Lcoh becomes diagonal such that the left
and right eigenvectors are identical, µ̌l → µ̂l. Using the orthonormality of the left and
right eigenstates of Lcoh, we can simplify Equation (5.29) as follows:

||ρ̂(1)|| =

√√√√∑
l

∣∣∣∣ glΓl

∣∣∣∣2 . (5.30)

The coefficients gl describe how strongly a certain eigencoherence is driven away from
zero by the signal Lext. They are compared to the corresponding relaxation rates Γl
that try to decrease them to zero. Hence, the denominator ||ρ̂(1)|| of Equation (5.25)
ensures that the overall effect of the signal on each eigencoherence remains small com-
pared to the dissipative stabilization of the limit cycle. Note that the assumptions
that Lcoh

0 is diagonalizable and that the eigencoherences form a complete orthonormal
basis have only been used to discuss the physical meaning of the threshold η. In par-
ticular, the definition (5.25) remains well-defined even if these simplifying assumptions
do not hold.

5.3 Extended Arnold tongue

As a first application of the formalism developed in Section 5.2, we address the open
question of delimiting the synchronization region as a function of the detuning ∆ and
the signal strength ε. It is known from classical physics that the range of detunings for
which synchronization exists increases with the signal strength [Pikovsky et al., 2003].
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Figure 5.5: Extended Arnold tongue for the equatorial limit-cycle
oscillator introduced in Section 5.2.6 with imbalanced dissipation rates,
γd/γg = 100, subject to a semiclassical signal, t0,1 = t−1,0 = 0.5,
t−1,1 = 0. Usually, the Arnold tongue is plotted for any detuning ∆
up to a maximum cutoff value εmax(0), indicated here by a dashed
white line. Our framework allows us to derive the boundary between
the synchronization regime (colored) and the forcing regime (white) as
a function of the detuning, ε(∆) = η/

√
(γ2

d + ∆2)−1 + (γ2
g + ∆2)−1,

which is represented by the solid black line. The Arnold tongue is
extended for nonzero detuning and becomes a snake-like split tongue.
The numerical value of the threshold parameter is η = 0.1.

This yields the classic triangular region of synchronization called “Arnold tongue”
shown in Figure 2.7. Moreover, there is a crossover from synchronization to forced
oscillation if the signal strength becomes too large. Therefore, the Arnold tongue is
typically plotted up to an arbitrary signal strength εmax that is qualitatively chosen
to ensure that the signal is only weakly perturbing the limit cycle for any value of the
detuning [Lee et al., 2014; Sonar et al., 2018; Roulet and Bruder, 2018a,b].

Our method allows us to go beyond this qualitative approach and to formally
derive an analytical upper boundary of the Arnold tongue by explicitly tracking the
validity of the perturbation theory for a fixed threshold η. Figure 5.5 illustrates
this result for the equatorial limit cycle introduced in Section 5.2.6 and stabilized by
the transitions shown in Figure 5.2(a). We can obtain the maximum signal that is
permitted on resonance, εmax(0), which determines the maximal signal strength εmax

for a simple horizontal cut of the Arnold tongue, shown by the dashed white line
in Figure 5.5. However, our results reveal that the boundary of the synchronization
region is actually a function of the detuning, εmax(∆), i.e., the standard horizontal
cut discards an entire part of the Arnold tongue. The physical origin of this uncharted
region is that the ability of the signal to synchronize the limit-cycle oscillator (i.e.,
to build up coherences) is reduced if the detuning is increased. To compensate this
decrease, the signal strength can be increased beyond the resonant bound,

εmax(∆) ≥ εmax(0) .

Therefore, the Arnold tongue must be extended to larger off-resonant drive strengths
and becomes a snake-like split tongue.

In the following sections, we will apply our framework to specific well-known limit
cycles to determine the maximum synchronization that is possible in each system.
First, we will discuss the quantum vdP model.
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5.4 Van der Pol limit cycle

The vdP oscillator has been proposed a century ago [van der Pol, 1926] and has become
an important model to gain theoretical insight into the phenomenon of synchroniza-
tion. After the success of the model in the classical world, it has been quantized and
studied in the regime of a few excitations to probe features of quantum synchroniza-
tion [Lee and Sadeghpour, 2013; Walter et al., 2014]. At first sight, it may not be
clear whether any link can be drawn between a mathematical model formulated within
the position-momentum phase space of an oscillator and a spin-1 system, which is a
purely quantum system with no classical analogue. However, we will show that, when
operated deep in quantum regime, the vdP limit cycle can be faithfully represented in
the spin-1 platform, which grants access to tractable analytics and demonstrates the
versatility of the most elementary quantum unit to study quantum synchronization.

5.4.1 Harmonic oscillator vs. spin 1

The defining characteristic of the vdP model is its stabilization of self-sustained oscil-
lations, which is balancing a linear gain of energy against a nonlinear damping. This is
the key feature used to construct the quantum model of the vdP limit-cycle oscillator
proposed by Lee and Sadeghpour [2013] and Walter et al. [2014]. As derived in Sec-
tion 2.6, a quantum-mechanical system that converges to the dynamics of a classical
weakly nonlinear vdP oscillator is given by a harmonic oscillator, Ĥsys = ~ω0â

†â with
single-photon gain and two-photon loss processes, Ôg = â† and Ôd = â2, respectively,
[Lee and Sadeghpour, 2013; Walter et al., 2014]

d

dt
ρ̂ = − i

~

[
~ω0â

†â, ρ̂
]

+ γgD[â†]ρ̂+ γdD[â2]ρ̂ .

We will now discuss how the quantum vdP model defined for a harmonic oscillator
can be mapped onto a spin-1 system. The vdP oscillator can be brought to the
quantum regime by increasing the damping rate, γd � γg, such that occupied Fock
states are strongly relaxed towards the bottom of the energy ladder except for the
first excited state, which is unaffected by the two-photon loss. The oscillator is then
confined in the vicinity of the first excited state and mostly couples to the vacuum
and the two-photon Fock state when submitted to a weak signal. Hence, deep in the
quantum regime γd � γg, the van der Pol oscillator can effectively be restricted to the
three lowest Fock states [Lee and Sadeghpour, 2013; Walter et al., 2014]. Therefore,
the three levels of a spin-1 system provide a valid support for the vdP limit cycle.
To implement the dissipative dynamics in the spin platform, we consider a single-
excitation gain process and a two-excitation loss process of the form

Ôg = ŜzŜ+ − Ŝ+Ŝz/
√

2 ,

Ôd = Ŝ2
−/
√

2 ,

with the transition rates γg and γd, respectively, as shown in Figure 5.2(b). The
numerical prefactors are chosen such that the matrix representations of Ôg and Ôd

are identical to the matrix representations of the creation â† and two-photon annihi-
lation â2 operators of a harmonic oscillator restricted to the three lowest Fock states.
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Similarly, we renormalize the signal coefficients for the rest of the section as follows:

t0,1 = τ0,1 ,

t−1,0 = τ−1,0/
√

2 , (5.31)

t−1,1 = τ−1,1/
√

2 .

Having specified the stabilization of the limit cycle, we obtain the steady-state
populations by solving Equation (5.11) for the leading order k = 0, i.e., L0ρ̂

(0) = 0.
This yields the limit-cycle populations

ρ
(0)
1,1 =

γg

3γd + γg
,

ρ
(0)
0,0 =

γd

3γd + γg
, (5.32)

ρ
(0)
−1,−1 =

2γd

3γd + γg
.

In the quantum regime γd � γg, the populations converge to the values (0, 1/3, 2/3),
which are precisely those of a van der Pol limit cycle implemented in a harmonic
oscillator [Lee and Sadeghpour, 2013; Walter et al., 2014]. Hence, as long as the
oscillator is confined deep in the quantum regime, its effective density matrix truncated
to the first three levels of the harmonic ladder is identical to that of a spin-based vdP
oscillator. Since the perturbation expansion (5.11) is valid for both oscillator-based
and spin-based systems, the equivalence remains true once a signal Lext is applied.
Conversely, any difference between the states of the two platforms indicates that the
oscillator is transitioning towards the classical regime, populating higher Fock states,
and thus losing the possibility to be represented in a spin-1 system.

To conclude the comparison, we note that there remains a fundamental difference
between the two platforms, namely the phase space representation which is at the core
of the synchronization phenomenon. For a spin-based oscillator, the infinite position-
momentum plane of a harmonic oscillator is replaced by a sphere, i.e., a space of dif-
ferent topology. Nevertheless, as discussed in Appendix B, a phase distribution Pρ̂(φ)
for oscillator-based systems and a corresponding shifted phase distribution Sρ̂(φ) can
be defined in several ways. For the approach based on phase eigenstates introduced by
Susskind and Glogower [1964], which has been used by Hush et al. [2015] and Lörch
et al. [2016] to quantify quantum synchronization, one finds

Sosc
ρ̂ (φ) =

1

2π
|ρ1,0 + ρ2,1| cos[φ+ arg(ρ1,0 + ρ2,1)]

+
1

2π
|ρ2,0| cos[2φ+ arg(ρ2,0)] . (5.33)

This result has the same form as the expression (5.20) for spin-based systems up to a
different numerical prefactor of the cos(φ) term. Therefore, the qualitative synchro-
nization behavior of the vdP model will be identical in both platforms and we can
exploit the spin system to characterize its deep quantum limit analytically. For the
rest of this section, formulas are given in the deep quantum limit γd � γg and in the
limit γd � ∆ unless stated differently.
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5.4.2 Semiclassical and squeezing signal

We start by considering a situation explored in a recent numerical study, which showed
that the synchronization of a vdP oscillator can be significantly enhanced by exploit-
ing the quantumness of the system, specifically by adding a squeezing component to
a semiclassical signal [Sonar et al., 2018]. Our analytical study will reveal that there
is actually an optimal amplitude of the squeezing component beyond which synchro-
nization decreases again.

Using Equation (5.15), we compute the first-order correction ρ̂(1), which is valid
for arbitrary dissipative rates,

ρ
(1)
1,0 =

2
√

2iγgτ−1,0

(γd + γg + i∆)(3γg + 2i∆)

[
ρ

(0)
0,0 − ρ

(0)
−1,−1

]
(5.34a)

+

√
2iτ0,1

γd + γg + i∆

[
ρ

(0)
1,1 − ρ

(0)
0,0

]
,

ρ
(1)
0,−1 =

2iτ−1,0

3γg + 2i∆

[
ρ

(0)
0,0 − ρ

(0)
−1,−1

]
, (5.34b)

ρ
(1)
1,−1 =

2
√

2iτ−1,1

γg + 2γd + 4i∆

[
ρ

(0)
1,1 − ρ

(0)
−1,−1

]
. (5.34c)

Combining this result with Equation (5.20), we obtain the synchronization measure

Sερ̂(1)(φ) = ε
3

8
√

2
|ρ(1)

1,0 + ρ
(1)
0,−1| cos

[
φ+ arg(ρ

(1)
1,0 + ρ

(1)
0,−1)

]
+ ε

1

2π
|ρ(1)

1,−1| cos
[
2φ+ arg(ρ

(1)
1,−1)

]
.

Inspection of Equation (5.34) reveals that, by changing the phase of the signal com-
ponent τ−1,1, we can shift the maxima of the cos(2φ) term relative to the maximum
of the cos(φ) term. If the condition

2 arg
[
ρ

(1)
1,0 + ρ

(1)
0,−1

]
= arg

[
ρ

(1)
1,−1

]
(5.35)

holds, both terms share a common maximum at φ = − arg[ρ
(1)
1,−1]/2. In the following,

we assume that the phase of τ−1,1 has been adjusted in this way such that Equa-
tion (5.21) takes the form

S(ερ̂(1)) = ε

[
3

8
√

2
|ρ(1)

1,0 + ρ
(1)
0,−1|+

1

2π
|ρ(1)

1,−1|
]
. (5.36)

This result indicates that adding a squeezing signal will increase the synchronization
measure S but this effect may be compensated by a decrease of the overall signal
strength ε, which is determined according to Equation (5.25).

Following Sonar et al. [2018], we now focus on a semiclassical signal. In the spin
system considered here, this corresponds to fixing the coefficients as τ0,1 = τ−1,0 and
τ−1,1 6= 0. The resulting synchronization measure S is plotted in Figure 5.6. Near
resonance, ∆ ≈ 0, S corrobates the numerical results of Sonar et al. [2018], namely,
the vdP oscillator synchronizes better to signals dominated by a squeezing harmonic
where

τratio =
|τ−1,1|
|τ0,1|

� 1 . (5.37)
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Figure 5.6: Synchronization of the van der Pol oscillator deep
in the quantum regime to a combination of semiclassical and
squeezing components at relative strength τratio = |τ−1,1| / |τ0,1|.
The color bar ranges from the minimum synchronization

√
5/2/6π

achieved for τratio → ∞ to the maximum synchronization S/η =√
5(32 + 9π2)/48π at the optimal ratio τopt

ratio, which is indicated by
the dashed black line. Parameters are γd/γg = 1000 and η = 0.1.

However, it seems that this advantage is substantially reduced, if not suppressed, when
trying to lock to an off-resonant signal |∆| � γg. There, the semiclassical component
should be favored in order to maximize phase localization.

To investigate this trade-off and establish whether squeezing is only beneficial
within a narrow bandwidth around resonance, we turn to analytics and investigate
the synchronization measure S more closely. In the quantum regime γd � γg, it takes
the compact form

S = η

√
5

48π

3πγd + 8τratio

√
9γ2

g + 4∆2√
γ2

d + 2τ2
ratio

(
9γ2

g + 4∆2
) . (5.38)

Indeed, the maximum synchronization

max
τratio

S
η

=

√
5(32 + 9π2)

48π
≈ 0.163

is achieved by the optimal squeezing ratio

τopt
ratio =

4

3π

γd√
9γ2

g + 4∆2
,

which is maximum on resonance and tends to zero for large detuning. On the other
hand, synchronization to a purely semiclassical signal without the squeezing compo-
nent, τratio = 0, is limited to

lim
τratio→0

S
η

=

√
5

16
≈ 0.140 .

Thus, having a squeezing component in addition to a semiclassical one is always bene-
ficial to synchronize the vdP limit-cycle oscillator. However, note that synchronization
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decreases again in the limit of a very strong squeezing signal, where we find

lim
τratio→∞

S
η

=
1

6π

√
5

2
≈ 0.084 .

The existence of an optimal squeezing amplitude has not been observed in the
numerical study by Sonar et al. [2018] since the semiclassical and squeezing signals
could not be compared to each other. In our approach, different signals can be com-
pared since the signal strength ε is adjusted such that each signal has the same impact
on the deformation of the limit cycle according to Equation (5.25). An increase of
the coherence ρ(1)

1,−1 due to a squeezing signal must be compensated by a decrease of

the semiclassical signal components, which decreases the coherences ρ(1)
1,0 and ρ

(1)
0,−1.

Consequently, there must be an optimal combination of semiclassical and squeezing
that delivers the largest value of the synchronization measure S/η.

The different numerical values of maximum synchronization for a pure semiclas-
sical or a pure squeezing signal stem from the different weights that the phase-space
representation attributes to the spin-1 states. These weights are reflected in the nu-
merical prefactors of the synchronization measure (5.20). The same amplitude of the
terms |ρ(1)

1,0 + ρ
(1)
0,−1| and |ρ

(1)
1,−1|, determined by the maximum signal strength (5.25),

will lead to different amplitudes of Sρ̂(φ), as illustrated by the relation(
3

8
√

2

)−1

lim
τratio→0

S
η

=

(
1

2π

)−1

lim
τratio→∞

S
η
.

5.4.3 Optimized signal

In the previous section, we discussed results that had previously been obtained in a
harmonic-oscillator based system, and we demonstrated the power of the spin-1 plat-
form to go beyond a numerical analysis using our framework for quantum synchroniza-
tion. We now conclude our study of the vdP limit-cycle oscillator by answering the
fundamental question of what is the maximum synchronization that can be achieved
for a vdP oscillator deep in the quantum regime.

To this end, we relax the semiclassical restriction τ0,1 = τ−1,0 and employ the
following parametrization of the signal:

τ0,1 = cos(ζ)eiχ , (5.39a)
τ−1,0 = sin(ζ) , (5.39b)
|τ−1,1| = τratio . (5.39c)

The angle 0 ≤ ζ ≤ π/2 parametrizes the strength of the two semiclassical signal com-
ponents and the angle 0 ≤ χ ≤ 2π determines their relative phase. The phase of the
squeezing drive is still fixed by the condition (5.35) and τratio again parametrizes the
strength of the squeezing component. For this parametrization, the synchronization
measure has the general form

S =
p1√

p2 + p3τ2
ratio

(p4 + p5τratio) ,

where the fraction stems from the definition of ε in Equation (5.25), and the term in
brackets stems from the square brackets in Equation (5.36). Deep in the quantum
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regime, the coefficients pk have the following form to leading order in γg/γd:

p1 =

√
5

3
η +O

[
γg

γd

]
,

p2 =
8 sin2(ζ)

9(9γ2
g + 4∆2)

+O
[
γg

γd

]
,

p3 =
16

9γ2
g

γ2
g

γ2
d

+O

[(
γg

γd

)3
]
,

p4 =
1

4
√

2

sin(ζ)√
9γ2

g + 4∆2
+O

[
γg

γd

]
,

p5 =

√
2

3πγg

γg

γd
+O

[(
γg

γd

)2
]
.

We have p3/p2 = O[(γg/γd)2] and p5/p4 = O(γg/γd), i.e., the terms p3 and p5 stem-
ming from the squeezing signal are suppressed compared to the corresponding terms
originating from the semiclassical signal. Synchronization is maximal if both signal
components contribute equally to S, therefore, the optimal ratio between the semi-
classical and the squeezing components is of the order of γd/γg,

τopt
ratio =

p2p5

p3p4
=

4 sin(ζ)γg

3π
√

9γ2
g + 4∆2

γd

γg
+O(1) ,

which compensates the asymmetry between the semiclassical and squeezing contribu-
tions and maximizes S with respect to the parameter τratio. Focusing on the resonant
case ∆ = 0 for simplicity, we find that the optimal relative phase of the semiclassical
signal components is

χopt
∣∣
∆=0

= 0

and that the optimal relative strength of the two components is given by the angle

ζopt
∣∣
∆=0

= arccot

(√
2γd

3γg

)
+O

[(
γg

γd

)2
]
.

This result is illustrated in Figure 5.7. As displayed in the inset, the maximum
synchronization that is possible for a vdP limit-cycle oscillator in the quantum regime
takes the value

S
η

∣∣∣∣
∆=0,χopt,ζopt,τoptratio

=

√
40 + 45

2 π
2

24π
≈ 0.215 . (5.40)

This results will allow us to compare the vdP model with other limit cycles available in
the spin-1 system. Note that, despite the convergence ζopt → 0 deep in the quantum
regime, the semiclassical signal component τ−1,0 cannot be simply switched off by
setting ζ = 0 because synchronization will then be limited to

lim
ζ→0

S
η

∣∣∣∣
∆=0,χopt,τoptratio

=

√
5(32 + 9π2)

48π
≈ 0.163 .
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Figure 5.7: Main plot: Synchronization of the van der Pol oscilla-
tor deep in the quantum regime, γd/γg = 100, to a resonant signal of
the general form (5.39) with χ = 0. For reference, the dashed black
line indicates the optimal ratio of squeezing for a given ζ. The solid
markers indicate from right to left the optimal signal parameters for
γd/γg = 10, 100, and 1000. In the quantum regime, the optimal value
of τratio converges to τopt

ratio = 2
√

2/3π and ζopt decreases with γd/γg,
as indicated by the solid green arrows. Inset: S/η evaluated at the
optimal values τopt

ratio and ζopt as a function of γd/γg. Maximum syn-
chronization is obtained in the limit γd/γg →∞ where S/η converges
to
√

40 + 45π2/2/24π ≈ 0.215, indicated by the dashed blue line. The
threshold parameter is η = 0.1.

5.5 Equatorial limit cycle

5.5.1 Limit-cycle stabilization

We now move away from classically-inspired limit cycles and consider the equatorial
limit cycle used in Section 5.2.6. It is stabilized by the dissipative coupling operators

Ôg = Ŝ+Ŝz ,

Ôd = Ŝ−Ŝz ,

with rates γg and γd, respectively. The key feature of the resulting stabilization
is its simplicity, because the extremal states |±1〉 are independently relaxed to the
equatorial state |0〉 and the limit cycle is

ρ̂(0) = |0〉 〈0| . (5.41)

Incidentally, the absence of initial population in the extremal states ρ(0)
±1,±1 = 0 renders

the limit cycle insensitive to a squeezing signal, such that ρ(1)
1,−1 is bound to stay zero,

ρ
(1)
1,0 = − i

√
2

γd + i∆
t0,1 ,

ρ
(1)
0,−1 = +

i
√

2

γg + i∆
t−1,0 , (5.42)

ρ
(1)
1,−1 = 0 .
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However, the two remaining coherences can be built up independently by the signal
components of the corresponding transitions. Therefore, we can optimize them inde-
pendently to maximize the synchronization measure S given by Equation (5.20), and
we will find that a straightforward combination of the semiclassical signal components
outperforms the maximal synchronization achieved by a vdP limit cycle.

To proceed further, we choose the following parametrization of the signal:

t0,1 = cos(ζ)eiχ , (5.43a)
t−1,0 = sin(ζ) , (5.43b)
t−1,1 = 0 . (5.43c)

Remarkably, this time the synchronization measure can be expressed in a compact
form without imposing any constraint on the signal,

S
η

=
3

16

√
1− 2

sin(ζ) cos(ζ) cos(χ+ α)

r cos2(ζ) + 1
r sin2(ζ)

, (5.44)

where we defined the abbreviations

r =

√
γ2

g + ∆2

γ2
d + ∆2

,

α = arg

(
1

γg − i∆
1

γd + i∆

)
.

5.5.2 Semiclassical signal

First, we analyze synchronization to a semiclassical signal, t0,1 = t−1,0, which cor-
responds to χ = 0 and ζ = π/4 in the parametrization (5.43). This reproduces the
scenario studied by Roulet and Bruder [2018a], where synchronization was found to
vanish for balanced dissipation rates γd = γg. Within the present framework, we can
go a step further and identify the physical origin of this singularity. For balanced
rates, the semiclassical signal builds up both coherences at the same strength against
the same relaxation rate, such that the coherences have identical absolute values but
opposite phases, ρ0,1 = −ρ−1,0. Since the synchronization measure (5.20) is a function
of their sum, |ρ0,1 + ρ−1,0|, this will lead to destructive interference, captured by the
factor cos(χ+ α) = 1 in Equation (5.44), and no synchronization is observed,

S
η

∣∣∣∣
γg=γd,χ=0,ζ=π

4

= 0 .

Building on this understanding, we find that for any finite asymmetry between
the rates, one of the coherences dominates such that the impact of the destructive
interference is reduced,

S
η

∣∣∣∣
χ=0,ζ=π

4

=
3

16

√
1− 2

γgγd + ∆2

γ2
d + γ2

g + 2∆2
. (5.45)

For imbalanced rates, synchronization is largest on resonance, ∆ = 0. Maximum
synchronization to a semiclassical signal is obtained for highly asymmetric relaxation
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rates,

lim
γd/γg→∞

S
η

∣∣∣∣
χ=0,ζ=π

4
,∆=0

=
3

16
≈ 0.188 ,

where only one of the coherences contributes without being suppressed by the other.
Comparing to the vdP limit cycle, this value is larger than the one obtained for the
same semiclassical signal, S/η ≈ 0.140, but it is lower than the one obtained for the
optimized signal, S/η ≈ 0.215, which combined all three coherences.

5.5.3 Optimized signal

Equation (5.42) shows that in the case of an equatorial limit cycle, the coherences ρ(1)
1,0

and ρ(1)
0,−1 can be built up individually by modifying the two corresponding semiclassi-

cal signal components. To improve on the vdP model, we thus aim for a signal where
the coherences are built in phase and therefore interfere constructively. At the level of
the synchronization measure (5.44), this amounts to require cos(χ+α) = −1. We are
then left with the task of maximizing the term 2 sin(ζ) cos(ζ)/[cos2(ζ)r + sin2(ζ)/r].
This yields the optimal angles

χopt = π − α , (5.46a)
ζopt = arctan(r) , (5.46b)

where the second condition implies that both coherences have the same amplitude.
The resulting constructive interference yields

S
η

∣∣∣∣
χopt,ζopt

=
3

16

√
2 ≈ 0.265 , (5.47)

which is the maximum synchronization that is possible for the equatorial limit cycle
and which is larger than the corresponding result for a quantum vdP limit cycle. This
result is illustrated in Figure 5.8 for the case of balanced dissipation rates, where
synchronization to a semiclassical signal is not possible.

5.6 Maximum synchronization in the quantum regime

So far, we used the framework for quantum synchronization developed in Section 5.2
to compare specific limit-cycle oscillators and to optimize the applied signals in the
quantum regime. However, we can go beyond this and derive a fundamental limit to
synchronization deep in the quantum regime. In contrast to the previous sections, we
will not focus on any specific limit cycle. Instead, we will only rely on the paradigm
of synchronization and on the properties of the spin-1 system supporting the limit
cycle, which follow from the laws of quantum mechanics. With these quite general
assumptions, we will perform an optimization over all signals and all possible limit
cycles of a spin-1 system.

5.6.1 Upper bound on quantum synchronization

In a first step, we derive an upper bound on the synchronization measure S(ρ̂) based on
the analytical insights gathered in the previous sections. As discussed in Section 5.2.2,
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Figure 5.8: Equatorial limit cycle with balanced dissipation rates
γg = γd subject to a resonant signal parametrized by the convention of
Equation (5.43). The relative phase χ between the semiclassical signal
components determines the relative phase of the coherences ρ0,1 and
ρ−1,0. They interfere constructively for χopt = π and destructively
for χ = 0. The parameter ζ determines if the amplitudes of the two
signal components are equal (ζopt = π/4) or different. The maximum
synchronization for the equatorial limit cycle, S/η = 3

√
2/16 ≈ 0.265,

is obtained at the intersection of the dashed black lines where both
coherences have the same amplitude and interfere constructively. A
semiclassical signal corresponds to χ = 0. The threshold parameter is
η = 0.1.

the rotational invariance of the limit-cycle state requires a diagonal steady-state den-
sity matrix, which we parametrize by

ρ̂(0) =
1

2

1− a− δ
2a

1− a+ δ

 . (5.48)

Here 0 ≤ a ≤ 1 is the population of the equatorial state |0〉, and δ is a real param-
eter that satisfies the conditions |a± δ| ≤ 1 and characterizes the asymmetry in the
populations of the extremal states |±1〉. In Equation (5.20) we have identified the
coherences between energy eigenstates as the resource of quantum synchronization.
The first-order correction of the expansion (5.18) can be parametrized as follows:

ρ̂(1) =

 0 b c
b∗ 0 d
c∗ d∗ 0

 , (5.49)

where b, c, and d are arbitrary complex parameters. As usual, we further set the
phase of c such that the maxima of the cos(φ) and cos(2φ) terms in Sρ̂(φ) coincide.

Substituting Equation (5.25) into Equation (5.21), we find that the synchroniza-
tion measure S(ρ̂) is a product of the term

η||ρ̂(0)|| = η√
2

√
1− 2a+ 3a2 + δ2 ,
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Figure 5.9: Main plot: Value of ||ρ̂(0)|| for the triangular set of
physical limit-cycle states ρ̂(0) parametrized by Equation (5.48). The
minimum value of the norm, 1/

√
3, is obtained for (a, δ) = (1/3, 0).

The maximum value, 1, is obtained for the extremal points of the
triangle, which represent pure states. The van der Pol limit cy-
cle corresponds to the point (a, δ) = (1/3, 2/3). Inset: Factor
(3 |2b| /8

√
2 + |c| /2π)/||ρ̂(1)|| as a function of the coherences b and

c introduced in Equation (5.49). The maximum value
√

8 + 9π2/2/8π

is achieved along the dashed black line |b| / |c| = 3π/4
√

2. If the coher-
ence ρ−1,1 cannot be built up, |c| = 0, a value of 3/8

√
2 is obtained.

which depends only on the structure (5.48) of the limit cycle and is shown in the main
plot of Figure 5.9, and of the term

q1 |b+ d|+ q2 |c|√
2(|b|2 + |c|2 + |d|2)

,

which depends only on the coherences introduced in Equation (5.49) and is shown
in the inset. The prefactors q1 and q2 depend on the phase-space representation and
take the values q1 = 3/8

√
2 and q2 = 1/2π for a spin-based system.

An upper bound to the synchronization achievable in the spin-1 system can be
derived by maximizing both terms individually. The norm ||ρ̂(0)|| takes its maximal
value of unity for pure energy eigenstates, which are represented by the extremal
points of the set of physical limit-cycle states shown in Figure 5.9. On the other
hand, the second term of S(ρ̂) is maximized if b = d holds and if the ratio of the
coherences satisfies

|b|
|c|

=
q1

q2
=

3π

4
√

2
,

which is indicated by the dashed black line in the inset of Figure 5.9. Taking the
product of the two maxima, we find that the synchronization measure is bounded
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Table 5.1: Synchronization performance S(ρ̂)/η of the quantum van
der Pol and the equatorial limit cycle for different signals. The results
are bounded by the maximum synchronization that can be achieved
in a spin-1 system, Smax = 0.288η.

limit cycle signal
semiclassical semiclassical & squeezing optimal

van der Pol 0.140 0.163 0.215
equatorial 0.188 0.188 0.265

from above by

S ≤ Smax = ηq2

√
1

2
+
q2

1

q2
2

. (5.50)

This bound takes the numerical value

Smax

η
=

√
2(16 + 9π2)

16π
≈ 0.288

for a spin-based system and

Smax

η
=

√
3

2
√

2π
≈ 0.195

for the phase-space of a harmonic oscillator introduced in Equation (5.33).

5.6.2 Tightness of the bound

As summarized in Table 5.1, all the combinations of limit cycles and signals considered
so far stay below the bound (5.50). Therefore, it remains to determine whether any
physical limit-cycle oscillator can actually reach the bound Smax.

This search is complicated by the trade-off that exists between maximizing ||ρ̂(0)||
and reaching the optimal ratio |b| / |c|. To illustrate this point, we classify the limit
cycles studied in the previous sections with respect to these two quantities. The vdP
limit cycle with the optimized signal discussed in Section 5.4.3 successfully implements
the optimal ratio of the coherences, but, since its limit cycle is a statistical mixture of
different spin states, it does not maximize ||ρ̂(0)||. On the other hand, the equatorial
limit cycle discussed in Section 5.5.3 implements the optimal value ||ρ̂(0)|| = 1 by
stabilizing the pure equatorial state |0〉, but the symmetry ρ1,1 = ρ−1,−1 = 0 then
enforces |c| = 0, putting the optimal ratio of the coherences out of reach.

To design a combination of limit cycle and signal that reaches Smax, we thus need
to break the symmetry between the states |±1〉, while ensuring that the limit cycle
remains close to a pure state. To this end, we supplement the equatorial limit cycle
by a third decay channel,

Ôg = Ŝ+Ŝz ,

Ôd = Ŝ−Ŝz ,

Ôd′ = ŜzŜ− ,
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as shown in Figure 5.2(c). The additional dissipative channel Ôd′ with a corresponding
rate γd′ induces an asymmetry in the limit cycle,

ρ̂(0) =

0
γg

γg+γd′ γd′
γg+γd′

 . (5.51)

We focus on the regime γd′ � γg where the limit cycle remains close to the state
|0〉. However, in contrast to the purely equatorial case, the present limit cycle is
sensitive to a squeezing signal, i.e., we can exploit the small but finite asymmetry in
the populations of the extremal states |±1〉 to engineer a non-vanishing coherence |c|.
In the limit γd′ � γg, the optimal ratio |b| / |c| = 3π/4

√
2 is obtained by choosing the

amplitude

|t−1,1| =
4

3π

√
(γg + γd)2 + 4∆2

γ2
d + γ2

g + 2∆2

γg

γd′
(5.52)

of the squeezing component, whereas the angles χopt and ζopt are the same as in
Equation (5.46). The divergence of the squeezing amplitude in the limit γd′ → 0,
|t−1,1| ∝ γg/γd′ , reflects the fact that the squeezing signal requires an asymmetry
between the |±1〉 states to build up the coherence ρ(1)

1,−1. The synchronization measure
reads

S = η

√
2(16 + 9π2)

16π

√
γ2

g + γ2
d′

(γg + γd′)2
−→

γd′�γg
Smax . (5.53)

Hence, in the regime of interest γd′ � γg, we find that the synchronization converges to
the upper bound Smax by approaching the equatorial limit-cycle state with ||ρ̂(0)|| ≈
1 while keeping the ratio of the coherences set to |b| / |c| = 3π/4

√
2. This result

demonstrates that the upper bound (5.50) is tight and indeed corresponds to the
maximum synchronization achievable in a spin-1 system. Importantly, this bound
applies to all quantum limit-cycle oscillators that can be restricted to the three lowest
states in the quantum regime, such as the quantum vdP oscillator.

5.6.3 Discussion

The bound (5.50) optimizes the synchronization measure S, introduced in Section 5.2.5,
over all limit-cycle states and all signals that can be applied in a spin-1 system. These
very different systems are made comparable by the universal definition (5.25) of a
weak signal strength, which compares the limit-cycle stabilization to the transitions
induced by the signal. The question of maximizing the synchronization of a limit-cycle
oscillator to an external signal is also subject of current research in classical physics.

Hasegawa and Arita [2014] focus on the limit cycle of circadian clocks, which
regulate the periodic daily activity of animals. In this case, the external signal, i.e.,
the daylight cycle, is given and the task is to find a limit cycle that provides an
optimal trade-off between frequency stability of the circadian clock and its ability to
synchronize to the daylight cycle. In the quantum case, it is usually easier to modify
the external signal than the dissipative limit-cycle stabilization. Nevertheless, our
framework allows one to address similar questions in the quantum case.

Harada et al. [2010], Zlotnik and Li [2012], and Tanaka [2014] consider the reverse
problem of finding an optimal external signal that maximizes the range of detuning
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[∆min,∆max] over which synchronization is observed, i.e., the width of the Arnold
tongue. The signal f(θ) is restricted to have (i) a fixed time-averaged power over
one period,

∫ 2π
0 f2(θ)dθ/2π, (ii) a fixed time-averaged area,

∫ 2π
0 |f(θ)| dθ/2π, or (iii)

a bounded magnitude |f(θ)| ≤ const. The limit-cycle oscillator is characterized by its
phase-response function governing the phase equation. In this approach, there is no
connection between the signal and the dissipative stabilization of the limit cycle, but
the constraints (i) to (iii) allow the authors to compare different signals applied to
the same limit-cycle oscillator among each other. The optimal signal is found to be
a combination of rescaled and shifted phase-response functions. The same approach
has been used by Zlotnik et al. [2013] to find a signal that minimizes the transient
time to synchronize a limit-cycle oscillator to a signal – a question that is reminiscent
of optimal quantum control theory.

Finally, Pikovsky [2015] has considered the case of a noisy classical limit-cycle
oscillator subjected to an external signal with fixed time-averaged power. In the limit
of very large noise, a purely harmonic signal f(t) ∝ cos(t) is found to be optimal. For
the vdP limit cycle, the harmonic drive is also optimal in the limit of very weak noise.
However, other limit-cycle oscillators may be optimally synchronized to a biharmonic
drive composed of oscillations at cos(t) and cos(2t).

5.7 Interference-based quantum synchronization blockade

Discussing the vdP and the equatorial limit cycle, we have already found hints on
interference effects between the coherences ρ1,0 and ρ0,−1. Now, we will discuss this
effect in more detail and we will show that such interference effects lead to a novel type
of synchronization blockade. For clarity of the formulas, we focus here on the equa-
torial limit cycle but the same quantum effect is present in other systems, including
the quantum vdP limit cycle.

Quantum synchronization blockade was first reported in a study of two coupled
nonlinear Kerr oscillators by Lörch et al. [2017], where conservation of energy was
found to favor the synchronization of detuned oscillators that are approximately sta-
bilized to different Fock states. This behavior is in contrast to the classical expectation
that synchronization is strongest on resonance and it is a manifestation of the discrete
energy levels with nonequidistant splitting. We now discuss a similar suppression of
quantum synchronization on resonance. However, the energy levels of a spin-1 system
are equally spaced, therefore, if there is a synchronization blockade, it has to be of a
different physical origin than the one discussed by Lörch et al. [2017].

Interference-based quantum synchronization blockade is based on the fact that the
external signal Ĥext tries to modify the limit-cycle state by transferring population
ρ

(0)
m,m of a spin eigenstate |m〉 to other states |n 6= m〉. This generates coherences ρ(1)

n,m

between the spin eigenstates. Starting from the equatorial state |0〉, a semiclassical
signal has actually two options for population transfer, namely, to the states |+1〉
or |−1〉. This corresponds to taking two different paths in an interferometer after
passing beam splitter. Since the signal is a coherent interaction, the spin states
acquire a fixed phase relation, which is manifested by the buildup of the coherences
ρ

(1)
1,0 and ρ(1)

0,−1 and is a necessary condition to observe phase localization. To determine
the phase distribution, only the frequency difference between the spin states matters
such that the transitions |1〉 ↔ |0〉 and |0〉 ↔ |−1〉 are identical. This corresponds to
recombining the two paths of the interferometer at a second beam splitter and gives
rise to an interference between ρ(1)

1,0 and ρ(1)
0,−1.
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We previously found that for any value of the detuning ∆, there exists a combi-
nation of optimal angles (5.46) such that synchronization is maximal. On resonance,
∆ = 0, the condition on the relative phase is χopt = π. On the other hand, shifting
the angle to χ = 0 leads to perfect destructive interference, S/η = 0. If we keep χ = 0
fixed and increase the detuning, the coherences (5.42) start to rotate clockwise in the
complex plane up to an angle of π/2 for infinitely large detuning. This is shown in
Figure 5.10. If the dissipation rates are balanced, γg = γd, both coherences rotate
together and the interference remains destructive regardless of the detuning. However,
if one of the dissipation rates dominates, the rotation of the corresponding coherence
lags behind such that the destructive interference is suppressed in a transient regime.
This leads to the onset of synchronization away from resonance, as illustrated in the
main plot of Figure 5.10.

For the equatorial limit cycle discussed in Section 5.5, the synchronization measure
has the form

S = η
3

16

√
1− cos

(
arctan

[
(γd − γg)∆

γdγg + ∆2

])
, (5.54)

where the cosine term approaches zero for a strong lag before coming back to unity.
Maximum synchronization is achieved at

|∆| = √γgγd ,

where the synchronization measure converges to

lim
γd/γg→∞

S
η

∣∣∣∣
χ=0,ζopt,|∆|=√γgγd

=
3

16
≈ 0.188

in the limit of strongly imbalanced rates. Note that this value remains below the
fundamental limit (5.47) of the equatorial limit cycle, since the detuning is not able to
rotate the coherences up to a relative angle of π, which is the condition for constructive
interference.

The revival of destructive interference for very large detuning, ∆ � γd, is due to
the fact that we constantly reoptimize the amplitudes of the two signal components
by changing the angle ζ with the detuning. Therefore, both coherences rotate in the
complex plane at a constant amplitude and destructive interference is recovered if both
coherences have been rotated by π/2. Interference-based quantum synchronization
blockade is also observed if both signal parameters are kept fixed, χ = 0 and ζ =
ζopt(∆ = 0), and only the detuning is changed. In this case, both the angle and the
absolute value of the coherences change and the coherence associated with the smaller
dissipation rate decays to zero, whereas the other one rotates and acquires a larger
amplitude.

Interference-based quantum synchronization blockade reveals that having the right
relative phase between the signal components is crucial to observe quantum synchro-
nization. This disproves the conjecture by Lee et al. [2014] that quantum synchroniza-
tion in a network of two mutually coupled identical vdP oscillators is only possible
for dissipative coupling but not for reactive coupling. Instead, the reactive coupling
term investigated in Lee and Sadeghpour [2013] happens to build up coherences that
interfere destructively to first order in the interaction strength ε. The synchroniza-
tion effect observed there is a second-order effect in ε that vanishes in the quantum
limit. A similar suppression of synchronization has been observed in a network of
two reactively coupled identical equatorial limit-cycle oscillators [Roulet and Bruder,
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Figure 5.10: Illustration of the interference-based quantum synchro-
nization blockade effect for the equatorial limit cycle introduced in
Section 5.2.6. The relative phase of the signal components is fixed
to χ = 0 and their relative amplitude is chosen according to Equa-
tion (5.46). For imbalanced dissipation rates, γd 6= γg, the coher-
ences ρ(1)

0,−1 and ρ
(1)
1,0 rotate by different angles if the detuning is in

the range γg . ∆ . γd, as indicated by the sketches in the upper
row. Therefore, their destructive interference is partially lifted and
synchronization is obtained as shown by the lower plot of S/η. For
strong asymmetries γd � γg, the maximum synchronization converges
to S/η = 3/16, which is indicated by the dotted black line. This is
smaller than the maximum synchronization possible for this limit cy-
cle, 3

√
2/16, because the detuning cannot fully align the coherences to

interfere constructively. The threshold parameter is η = 0.1.

2018b].

5.8 Experimental implementation of quantum synchro-
nization

Demonstrating quantum synchronization in an experiment remains challenging de-
spite the existence of proposals with trapped ions [Lee and Sadeghpour, 2013] and
optomechanical oscillators [Walter et al., 2014]. A significant part of the challenge lies
in the specific limit cycle that was envisioned at the time, namely the vdP oscillator,
which requires to engineer a single-photon gain and a damping where photons decay
in pairs.

Our findings reveal that one actually has a lot of freedom in tailoring a quantum
system that is able to synchronize, opening the realm of possibilities. Not only the
signal [Sonar et al., 2018] but also the limit cycle itself can be modified, which of-
fers a large and hitherto unexplored choice of both limit-cycle states and methods
to stabilize them without imposing a phase preference. When aiming for the first
observation of quantum synchronization, this freedom can be leveraged to devise the
best strategy to accommodate experimental constraints such as the natural relaxation
of the system, which is typically considered as an undesired source of noise. Shifting
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Figure 5.11: Experimental proposal to sustain self-oscillations in a
spin-1 system. The damping is realized by the natural relaxation of
the spin ladder, while the incoherent gain is engineered by coherently
driving the |−1〉 ↔ |a〉 transition and exploiting the spontaneous re-
laxation of the ancillary state |a〉 to the equatorial state |0〉.

the paradigm, we now show that this natural relaxation can in fact be exploited as a
useful contribution to the stabilization of the limit cycle, reducing the experimental
complexity of implementing a quantum self-sustained oscillator.

We now consider a spin-1 system that dissipates energy to its environment at
rates Γ1,0 and Γ0,−1, as illustrated in Figure 5.11. This system is realized in a vari-
ety of experimental platforms, such as trapped ions [Cohen and Retzker, 2014; Senko
et al., 2015], nitrogen-vacancy centers [Stark et al., 2018], and superconducting trans-
mons [Neeley et al., 2009; Bianchetti et al., 2010]. Given that we explicitly include
the natural dissipative dynamics into the limit cycle stablization, the only engineering
challenge that is left is to stabilize the oscillator away from its ground state by incoher-
ently pumping the transition between the ground state |−1〉 and the equatorial state
|0〉. This is feasible with current technology, and as an example we consider a scheme
that has been demonstrated experimentally with superconducting circuits [Leek et al.,
2009, 2010]. There, the working principle is to assist the incoherent transfer from the
ground state by driving a transition to an ancillary level, which decays spontaneously
into the excited state of interest. This scheme is sketched in the orange box in Fig-
ure 5.11 and has been used to efficiently achieve population inversion of up to 93%
in the steady-state [Leek et al., 2010]. Such a pumping scheme, supplemented by the
natural relaxation of the system, thus successfully establishes a quantum limit cycle.

We now go beyond the proof-of-concept approach and assess the performance of
this minimalistic limit-cycle oscillator, benchmarking against the optimal limit cycle
derived in Section 5.6. In the regime of interest Γ0,−1 � Γa where the population in
the ancillary state is negligible, (Γ0,−1/Γa)/(1 + 1/4C) � 1, the steady state of the
spin-1 system is given by

ρ̂(0) =

0
4C

1+4C
1

1+4C

 , (5.55)

where we introduced the cooperativity of the pumping process,

C =
g2

Γ0,−1Γa
. (5.56)
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The larger the cooperativity, the more efficiently the pumping acts against the natural
relaxation. In practice, the population of the equatorial state |0〉 can be varied from
zero to close to unity by adjusting the cooperativity C. A value of C = 1/8 implements
a vdP-type occupation distribution, whereas a large cooperativity C � 1 implements
a limit-cycle state that is mostly the equatorial state |0〉. Remarkably, any finite
cooperativity will inevitably lead to an asymmetry between the empty state |1〉 and
the nearly-empty ground state |−1〉, which is exactly the requirement we derived for
optimizing synchronization deep in the quantum regime. This implies that the exper-
imental scheme proposed here is actually able to implement the optimal limit cycle
provided that the cooperativity is large enough. The experimental demonstration of
the pumping scheme reported a decade ago [Leek et al., 2010] corresponds to C ≈ 3.
This achievement is already large enough to implement the first observation of quan-
tum synchronization, and sets the optimal limit cycle within reach of state-of-the-art
experiments.

5.9 Summary

In this chapter, we have developed a framework to study synchronization in the quan-
tum regime based on the perturbative nature of the phenomenon. This allowed us to
identify the coherences between energy eigenstates as the resource of quantum synchro-
nization. We have found that interference effects between coherences that transform
identically under rotations may either enhance or hinder synchronization. This result
allowed us to explain previous observations and led us to identify a novel interference-
based quantum synchronization blockade that does not rely on anharmonicity in the
energy levels.

Our framework contains a rule how to choose the signal strength such that the
signal stays within the perturbative regime of synchronization and the integrity of the
limit cycle is guaranteed to be preserved. The resulting maximum signal strength is
a function of the detuning, such that the classical Arnold tongue can be extended for
nonzero detuning and becomes a snake-like split tongue.

Focusing on the smallest quantum system that can be synchronized, namely a
spin-1 system, we applied the formalism to compare the synchronization of different
combinations of limit cycles and signals. To this end, we have demonstrated that
the vdP model can be faithfully represented in the spin-1 platform even though the
planar position-momentum phase space of the oscillator is replaced by the spherical
phase space of a spin. Exploiting the low-dimensional Hilbert space, we have been
able to provide an analytical description of previous numerical studies and to derive
the optimized signal for this specific limit cycle. We compared the performance to an
equatorial limit cycle, which we found to synchronize better despite being insensitive
to squeezing.

Furthermore, the analytical understanding gained along the way led us to derive a
fundamental bound on the maximum synchronization that can be achieved in the spin-
1 system. This result also applies to the quantum vdP oscillator and other limit-cycle
oscillators that can be restricted to the lowest three levels in the quantum regime. The
bound has been shown to be tight by explicitly constructing a limit cycle that reaches
the bound asymptotically for an optimized signal. Moreover, we have motivated
that this limit cycle is actually within experimental reach of current technology by
proposing a practical stabilization scheme. With this limit-cycle oscillator at hand,
quantum synchronization could be readily observed by applying standard coherent
(laser) signals that are routinely used in most experimental platforms.
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Our findings pave the way to study synchronization of spin-based networks. Since
the spin-1 system has the smallest Hilbert space that is able to capture all features
of a vdP oscillator deep in the quantum regime, it is a promising candidate to study
networks both in terms of numerical efficiency and analytical accessibility.

Finally, our result on the fundamental limit to the synchronization of a spin-
1 system constitutes the first step towards understanding the quantum-to-classical
transition in synchronization. It provides a reference point to study how this funda-
mental limit evolves for higher spin numbers, particularly for half-integer spins which
do not have access to an equatorial pure-state limit cycle.

The results and figures presented in this chapter have been published in parts in
[Koppenhöfer and Roulet, 2019].
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Chapter 6

Digital Quantum Simulation of
Quantum Synchronization

The results presented in this chapter have been published in:

M. Koppenhöfer, C. Bruder, and A. Roulet,
Quantum Synchronization on the IBM Q System,
Physical Review Research 2, 023026 (2020).

6.1 Motivation

Synchronization, i.e., the adjustment of the rhythm of a self-sustained oscillation
to a weak perturbation, is a universal feature of many complex dynamical systems
[Pikovsky et al., 2003]. Classical synchronization has been demonstrated in a variety
of very different setups ranging from electrical circuits to biological neuron systems
[Adler, 1946; Pecora and Carroll, 1990; Chagnac-Amitai and Connors, 1989]. Several
proposals have been made to study quantum effects of synchronization in supercon-
ducting circuits [Zhirov and Shepelyansky, 2006; Nigg, 2018], optomechanical systems
[Ludwig and Marquardt, 2013; Walter et al., 2014], trapped ions [Lee and Sadeghpour,
2013; Hush et al., 2015], and nanomechanical oscillators [Holmes et al., 2012]. How-
ever, all experimental demonstrations of synchronization reported to date on these
platforms were operating in the classical regime [Zalalutdinov et al., 2003; Hossein-
Zadeh and Vahala, 2008; Zhang et al., 2015b; Bagheri et al., 2013; Shlomi et al.,
2015; Seitner et al., 2017; Gil-Santos et al., 2017; Bekker et al., 2017; Toth et al.,
2018; Huang and Hossein-Zadeh, 2018] because of the challenge to combine coherent
control and engineered nonlinear dissipation in a single experimental platform in the
quantum regime.

In the previous chapter, we introduced a theoretical framework for quantum syn-
chronization. The comparison of different limit-cycle oscillators and signals using
this framework led us to an alternative way to stabilize a limit-cycle oscillator in the
quantum regime, which is expected to be feasible with current technology. Here, we
choose yet another approach to implement a quantum limit-cycle oscillator, namely,
we experimentally demonstrate quantum synchronization by a digital quantum sim-
ulation. The quantum limit-cycle oscillator is realized in a single spin-1 system, the
smallest possible system that can host a limit-cycle oscillator [Roulet and Bruder,
2018a]. We use two qubits of a quantum processor to implement the desired spin-1
system while the remaining qubits play the role of the environment sustaining the
oscillation. The advantage of this approach is that the nonlinear dissipation required

https://link.aps.org/doi/10.1103/PhysRevResearch.2.023026
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to study quantum synchronization corresponds to easily engineered single-qubit relax-
ation. With this mapping in place, we perform a digital quantum simulation [Nielsen
and Chuang, 2011; Lloyd, 1996] of spin-1 synchronization dynamics on the publicly
available few-qubit quantum processors at the IBM Q System [IBM, 2019a].

The ongoing efforts to build a quantum computer have resulted in noisy interme-
diate-scale quantum (NISQ) devices [Preskill, 2018], which are constantly improving
in terms of decoherence and relaxation times, gate fidelities, and readout fidelities
[Corcoles et al., 2019]. NISQ devices have become a highly relevant platform for sim-
ulating realistic physical problems and they have already been used to find quantum
ground states [Peruzzo et al., 2014; Kandala et al., 2017; Reiner et al., 2019] and to
simulate closed-system quantum many-body dynamics [Smith et al., 2019a,b]. More-
over, it has been shown that they can in principle be used to simulate the dynamics of
dissipative quantum systems [Lloyd and Viola, 2001; Bacon et al., 2001; Kliesch et al.,
2011; García-Pérez et al., 2020]. Our results demonstrate that state-of-the-art NISQ
devices are indeed able to study complex dissipative quantum systems that were not
realized experimentally before.

This chapter is structured as follows. We introduce the spin-1 limit-cycle oscil-
lator considered in this chapter in Section 6.2. In Section 6.3, we derive a quantum
algorithm that implements its dynamics on a quantum computer. Information on the
quantum processors of the IBM Q System, on their simulation on classical hardware,
and on the quantum state tomography used to reconstruct the state of the spin-1 sys-
tem are given in Section 6.4. In Section 6.5, we test parts of the quantum algorithm on
an actual quantum processor and we identify obstacles imposed by current hardware.
Modifications of the quantum circuit in reaction to these obstacles are introduced
in Section 6.6. With these modifications, we are able to demonstrate quantum syn-
chronization on the quantum processors of the IBM Q System. The corresponding
experimental results are presented in Section 6.7 before we conclude in Section 6.8.

6.2 Spin-1 limit-cycle oscillator

Building on the insight into the physics of quantum synchronization obtained in Chap-
ter 5, we now design a quantum limit-cycle oscillator that is adapted to current NISQ
hardware. We focus on the smallest quantum system that can be synchronized, i.e., a
single spin 1 [Roulet and Bruder, 2018a], and on the least complex dissipative limit-
cycle stabilization mechanism, namely, the dissipative mechanism stabilizing the equa-
torial limit-cycle state |0〉 shown in Figure 5.2(a). To study quantum synchronization,
an external signal of strength ε is applied to the limit-cycle oscillator, which generates
coherent transitions between the spin-1 states and is described by a Hamiltonian Ĥext.
As discussed in Section 5.2, the dynamics in a frame rotating at the signal frequency
and under a rotating wave approximation is given by the QME

d

dt
ρ̂ = − i

~

[
∆Ŝz + εĤext, ρ̂

]
+ Γ−1,0D[Ŝ+Ŝz]ρ̂+ Γ1,0D[Ŝ−Ŝz]ρ̂ . (6.1)

Here, ∆ = ω0−ωext is the detuning between the spin precession frequency ω0 and the
signal frequency ωext. Without loss of generality, we have chosen the z-axis as the spin
quantization axis, and Ŝz is the corresponding spin-component operator introduced
in Appendix A.2. By Ŝ± we denote the spin raising and lowering operators, Γ−1,0

and Γ1,0 are the decay rates towards the state |0〉, and D is a Lindblad dissipator of
the form (2.12). We consider a general signal Hamiltonian Ĥext of the form (5.7),
which describes coherent transitions between the spin-1 eigenstates. For the sake of
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Figure 6.1: (a) Energy level diagram of a spin-1 system hosting
a limit-cycle oscillator. The limit cycle is stabilized by dissipative
transitions towards the spin-1 state |0〉 at rates Γ±1,0 and is subjected
to an external signal that drives transitions jk,l between the spin-1
states. (b) Working principle of a digital quantum simulation. Instead
of evolving the initial state ρ̂Q(0) of a quantum system Q, the state
is mapped onto a state χ̂S(0) of the quantum simulator S. Likewise,
the time evolution of Q is expressed in terms of quantum gates of the
simulator S. The time evolution is performed on the simulator S up
to the final state χ̂S(t), which is measured and decoded. (c) Spin-
1 energy level diagram shown in (a) expressed in terms of two-qubit
states according to the mapping (6.3). The surplus state |X〉 must be
isolated from the spin-1 states.

a compact notation of the subsequent results, we redefine the complex coefficients ti,j
that determine the relative amplitude and phase of the three possible transitions as
follows:

t0,1 =
j0,1√

2
,

t−1,0 =
j∗0,−1√

2
, (6.2)

t−1,1 =
j−1,1

2
.

This gives rise to the signal Hamiltonian

Ĥext = ~
(
j0,1√

2
ŜzŜ+ −

j0,−1√
2
ŜzŜ− +

j−1,1

2
Ŝ2

+ + H.c.

)
.

For instance, the combination j0,1 = j∗0,−1 and j−1,1 = 0 corresponds to a semiclassical
signal, while the choice j0,1 = j0,−1 = 0 and j−1,1 6= 0 corresponds to a squeezing
signal. A sketch of the coherent and dissipative transitions in the spin-1 system and
their associated rates is shown in Figure 6.1(a).

6.3 Mapping to a quantum computer

To implement the spin-1 synchronization dynamics (6.1) on a quantum computer,
we use the technique of quantum simulation introduced in Section 2.7.2. Quantum
simulation means that a quantum system Q – the spin-1 limit-cycle oscillator – is
implemented by means of another quantum system S – the quantum simulator –
which is experimentally well controllable.

As a quantum simulator, we use the publicly available quantum computers at the
IBM Q System, which are a NISQ version of a universal quantum computer. Conse-
quently, we will implement a digital quantum simulation, whose working principle is
sketched in Figure 6.1(b). In a first step, we define a mapping from the spin-1 Hilbert
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space onto the Hilbert space H(N) of the quantum computer. For reasons that will
become clear in Section 6.3.2, we choose to represent the three spin-1 states in terms
of the two-qubit states

|+1〉! |1〉q1 ⊗ |0〉q0 ≡ |10〉 , (6.3a)

|0〉! |0〉q1 ⊗ |0〉q0 ≡ |00〉 , (6.3b)

|−1〉! |0〉q1 ⊗ |1〉q0 ≡ |01〉 . (6.3c)

Note that this encoding gives rise to a fourth state

|X〉! |1〉q1 ⊗ |1〉q0 ≡ |11〉 (6.4)

outside the spin-1 Hilbert space, which needs to be isolated from the spin states.
The spin-1 level diagram expressed in terms of these two-qubit states is shown in
Figure 6.1(c).

6.3.1 Unitary time evolution

Having defined the mapping between the spin-1 system and the quantum computer,
we must translate the continuous time evolution (6.1) to the level of qubits, to which
we can only apply a finite set of discrete unitary gates summarized in Appendix C.
As described in Section 2.7.2, the exact time evolution is approximated by a series
of many transformations that propagate the system’s state for a small time step dt.
Trotter [1959] and Suzuki [1976] have developed formal ways to decompose the unitary
part of Equation (6.1). Here, we choose a symmetric decomposition that is exact up
to third-order corrections in terms of the small time step dt [Nielsen and Chuang,
2011],

ei(Â+B̂)dt = eiÂdt/2eiB̂dteiÂdt/2 +O(dt3) .

Applying this rule to the unitary part of Equation (6.1), we obtain the decomposition

e−i(∆Ŝz+εĤext)dt/~

= Û0

(
dt

2

)
Û1,0

(
dt

2

)
Û−1,0

(
dt

2

)
Û1,−1(dt)Û−1,0

(
dt

2

)
Û1,0

(
dt

2

)
Û0

(
dt

2

)
+O(dt3) , (6.5)

where

Û0(t) = e−i∆Ŝzt/~ , (6.6a)

Û1,0(t) = e−iε(j0,1ŜzŜ+/
√

2+H.c.)t/~ , (6.6b)

Û−1,0(t) = e+iε(j0,−1ŜzŜ−/
√

2+H.c.)t/~ , (6.6c)

Û1,−1(t) = e−iε(j−1,1Ŝ2
+/2+H.c.)t/~ . (6.6d)

To translate these unitary time-evolution operators to a corresponding transforma-
tion of the encoded states in the quantum computer, we define the spin-1/2 operators
τ̂x = σ̂x/2, τ̂y = σ̂y/2, and τ̂z = σ̂z/2, and the spin-1/2 ladder operators

τ̂± = τ̂x ± iτ̂y . (6.7)
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Note that we are using the quantum-information notation, where |0〉 is the eigenstate
of σ̂z with eigenvalue +1. Therefore, the raising and lowering operators act counter-
intuitively,

τ̂+ |1〉 = |0〉 ,
τ̂− |0〉 = |1〉 .

Using these ladder operators, we construct two-qubit operators that act on the two-
qubit subspace {|10〉 , |00〉 , |01〉} in the same way as the corresponding spin-1 operators
act on the spin-1 state space {|+1〉 , |0〉 , |−1〉},

ŜzŜ+/
√

2~! τ̂− ⊗ τ̂+τ̂− ,

ŜzŜ−/
√

2~! τ̂+τ̂− ⊗ τ̂− ,
Ŝ+Ŝz/

√
2~! τ̂+τ̂− ⊗ τ̂+ ,

Ŝ−Ŝz/
√

2~! τ̂+ ⊗ τ̂+τ̂− ,

Ŝ2
+/2~! (τ̂−τ̂+ ⊗ τ̂+τ̂−)SWAP ,

Ŝ2
−/2~! (τ̂+τ̂− ⊗ τ̂−τ̂+)SWAP ,

where SWAP denotes a swap operation of the two qubits in the quantum register. The
operator Ŝz can be obtained from the correspondences listed above via the decompo-
sition Ŝz = (ŜzŜ+ + Ŝ−Ŝz)

2 − (ŜzŜ− + Ŝ+Ŝz)
2. This mapping allows us to translate

the unitary time evolution operators (6.6) of a spin-1 system to the corresponding
unitary transformation acting on the encoded states in the quantum computer.

In a final step, these abstract unitary transformations of the two-qubit state must
be decomposed in terms of the quantum gates available on the IBM Q System, which
are listed in Appendix C. The part of the time evolution stemming from the free
Hamiltonian, Equation (6.6a), can be decomposed in terms of two single-qubit phase
rotations,

Û0(t) = R̂z(−∆t)⊗ R̂z(+∆t) .

This unitary transformation can be implemented by the following quantum circuit:

q0 :
U0(t) =

Rz(+∆t)

q1 : Rz(−∆t)

(6.8)

As shown in Figure 6.1, the unitary transformations (6.6b) and (6.6c) describing
the signal components j0,1 and j0,−1 correspond to rotations of the qubits q1 and q0,
respectively, provided that the other qubit is in the state |0〉. These rotations can be
expressed in terms of the U3 basis gate,

Û±1,0(t) = Û3

(
−2ε |j0,±1| t, arg(j0,±1)− 3π

2
,− arg(j0,±1)− π

2

)
, (6.9)

which is applied to the target qubit q1 (q0) as a controlled rotation conditioned on
the control qubit q0 (q1) being in the state |0〉. In the python API Qiskit [Abraham
et al., 2019a], which is used to program the IBM Q System, a controlled Û3 operation
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is already predefined, such that the corresponding quantum circuit reads as follows:

q(1−k)/2 :
=

X • X

q(1+k)/2 : Uk,0(t) U3 (−2ε |j0,k| t, αk − 2π,−αk)

(6.10)

where k ∈ {+1,−1} and αk = arg(j0,k) + π/2.
Note that we use the standard notation introduced in Section 2.7.1, where a con-

trolled two-qubit gate implements exactly the same unitary transformation on the
target qubit as the corresponding uncontrolled single-qubit gate. Prior to version
0.12.0, Qiskit implemented the controlled U3 gate only up to a local phase factor
on the control qubit, which we indicate by the notation U′3. To compensate the local
phase factor and obtain the transformation that is expected for a controlled U3 gate,
a Rz phase rotation must be added to the control qubit as follows:

•
=

Rz[(ϕ+ λ)/2] •

U3(θ, ϕ, λ) U′3(θ, ϕ, λ)

The definition of the U3 gate has been corrected in version 0.12.0 of Qiskit. In the
following, we will give all results in terms of the standard controlled U3 gate.

If a controlled U3 gate were not available, one had to decompose the Uk,0 gate
manually into single-qubit rotations and CNOT gates. This problem has been dis-
cussed by Barenco et al. [1995] for arbitrary controlled unitary operations. The key
idea is to rewrite the single-qubit rotation Ûk,0 as a sequence of three single-qubit
rotations Âk, B̂k, and Ĉk and two X̂ operators such that the following conditions
hold:

Ûk,0 = ÂkX̂B̂kX̂Ĉk , (6.11)

1̂ = ÂkB̂kĈk .

The three single-qubit rotations can be chosen as follows:

Âk = R̂z

[
arg(j0,k)−

π

2

]
R̂y (ε |j0,k| t) ,

B̂k = R̂y (−ε |j0,k| t) ,

Ĉk = R̂z

[
− arg(j0,k) +

π

2

]
.

Replacing the X̂ operators in Equation (6.11) by CNOT gates, one can implement a
controlled version of the Ûk,0 transformation conditioned on the control qubit being
in the state |1〉. A controlled operation conditioned on the state |0〉 is then achieved
by the following circuit:

q(1−k)/2 :
=

X • • X

q(1+k)/2 : Uk,0 Ck Bk Ak
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Finally, as shown in Figure 6.1, the squeezing signal j1,−1 transfers population
between the |01〉 and |10〉 states, i.e., it corresponds to a partial SWAP operation,

Û1,−1(t)!


1 0 0 0

0 cos(ε |j−1,1| t) −ie−i arg(j−1,1) sin(ε |j−1,1| t) 0

0 −iei arg(j−1,1) sin(ε |j−1,1| t) cos(ε |j−1,1| t) 0
0 0 0 1

 .

Khaneja et al. [2001] and Kraus and Cirac [2001] have shown that every unitary two-
qubit transformation Û can be decomposed into four single-qubit transformations Â1,
Â2, Â3, and Â4, and the two-qubit gate

N̂(α, β, γ) = exp [i (ασ̂x ⊗ σ̂x + βσ̂y ⊗ σ̂y + γσ̂z ⊗ σ̂z)]

in the following way:

Û = (Â1 ⊗ Â2)N̂(α, β, γ)(Â3 ⊗ Â4) .

Vatan and Williams [2004] constructed an optimal implementation of N̂(α, β, γ) that
requires only three CNOT operations. Applying their results, we obtain the following
decomposition of the Û1,−1 operation:

q0 : Rz(
π
2 ) Rz(−π

2 ) •

q1 : Rz(α) • Ry(
π
2 − ε |j−1,1| t) Ry(ε |j−1,1| t− π

2 ) • Rz(
3π
2 − α)

where α = arg(j−1,1). A slightly shorter notation of the same circuit in terms of the
U3 basis gate is

q0 :
U1,−1(t) =

U3(π, α′, α′) • U3(π,−α′ − π,−α′)

q1 : • U3(2ε |j−1,1| t, 0, π) •
(6.12)

where α′ = arg(j−1,1)− π/2.
These quantum circuits implement the unitary part of the time evolution of a spin-

1 system that has been mapped onto a quantum computer according to Equation (6.3).

6.3.2 Dissipative time evolution

Simulating the remaining non-unitary dissipative dynamics may seem challenging
given that we can only apply unitary gates on a quantum computer. However, this
task can be achieved by simulating discrete-time unitary dynamics on an extended
system where ancillary degrees of freedom mimic a dissipative environment. In fact,
Lloyd and Viola [2001] have shown that this environment can even be modeled by
only a single resettable qubit.

Our mapping (6.3) has the benefit that the limit-cycle state |0〉 corresponds to
the ground state |0〉q1 ⊗ |0〉q0 of the logical qubits. This allows us to implement
the required nonlinear limit-cycle stabilization with minimal complexity, since the
dissipative stabilization maps onto energy relaxation processes of the two qubits q0

and q1, as shown in Figure 6.1(c). In principle, one could take advantage of the natural
energy relaxation of the qubits to stabilize the limit cycle at the hardware-specific
relaxation rate Γrel. However, this is not sufficient if we want to study synchronization
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Table 6.1: Device parameters of the 5-qubit ibmqx2 processor on
September 30, 2019. The exact parameters fluctuate slowly in time and
are measured during the daily recalibration of the quantum processor.
Qubit 2 is the target qubit of the CNOT gates listed here.

errors/10−2

qubit T1/µs T2/µs ν/GHz readout U3 CNOT

0 66.4 50.5 5.29 1.0 0.09 1.3
1 66.2 55.5 5.24 1.1 0.10 1.9
2 63.2 75.0 5.03 1.0 0.07 −
3 57.8 29.1 5.30 1.2 0.10 1.7
4 63.6 56.8 5.08 1.4 0.09 1.2

for the following reason. As discussed in Section 5.2, an external signal Ĥext creates
coherences between the spin-1 states at a certain rate Γsignal. To satisfy the paradigm
of synchronization, Γsignal must be smaller than the rate Γrel at which the limit cycle
is stabilized. On a physical quantum processor, noise and unwanted couplings to
the environment will induce decoherence processes that decrease the magnitude of
the coherences at a decoherence rate Γdec. To observe synchronization, the signal
must overcome this decoherence, Γsignal > Γdec. However, this is incompatible with
the requirement Γrel > Γsignal since decoherence is typically stronger than energy
relaxation, Γdec > Γrel, as shown in Table 6.1.

Consequently, to study synchronization on a physical quantum processor, the nat-
ural energy relaxation rate Γrel must be artificially increased. This can be achieved
by the following circuit [Nielsen and Chuang, 2011]:

q : •

a : U3(θ, 0, 0) • |0〉

(6.13)

This quantum circuit maps an initial state |ψ(0)〉q⊗|0〉a = (α |0〉q+β |1〉q)⊗|0〉a onto
the state [

α |0〉q + β cos

(
θ

2

)
|1〉q

]
⊗ |0〉a + β sin

(
θ

2

)
|0〉q ⊗ |1〉a

immediately before the measurement. If we choose the angle θ such that the condition

sin2

(
θ

2

)
= Γdt� 1 (6.14)

is fulfilled, the measurement projects the qubit q to the state |ψ(dt)〉 |1 = |0〉q at a
probability Γ |β|2 dt if the measurement outcome is 1, or to the state

|ψ(dt)〉 |0 = α

(
1 +

Γ

2
|β|2 dt

)
|0〉q

+ β

(
1− Γ

2
dt+

Γ

2
|β|2 dt

)
|1〉q +O(dt2)

at a probability 1 − Γ |β|2 dt if the measurement outcome is 0. This is precisely the
dissipative dynamics that one obtains from a photon-counting SSE of the form (2.30)
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by setting ô = τ̂+, M̂ = Γτ̂−τ̂+/2, ξ = 0, and Ĥ = 0,

d |ψ〉 =

[
− i
~

(
−i~Γ

2
τ̂−τ̂+

)
+

Γ

2
〈ψ| τ̂−τ̂+ |ψ〉

]
|ψ〉 dt

+

[
τ̂+ |ψ〉√
〈ψ| τ̂−τ̂+ |ψ〉

− |ψ〉

]
dN , (6.15)

where dN ∈ {0, 1} is a stochastic Poissonian increment with expectation value

E(dN) = Γ 〈ψ| τ̂−τ̂+ |ψ〉 dt = Γ |β|2 dt .

The corresponding unconditional QME for the density matrix ρ̂ = E[|ψ〉 〈ψ|] is

d

dt
ρ̂ = ΓD[τ̂+]ρ̂ . (6.16)

Note that this equation actually describes single-qubit relaxation, because τ̂+ is a
spin-1/2 lowering operator, τ̂+ |1〉 = |0〉.

A controlled unitary gate requires at least two CNOT operations [Barenco et al.,
1995; Vatan and Williams, 2004], therefore, the quantum circuit (6.13) contains at
least three CNOT gates. However, since the controlled Û3 rotation followed by a
CNOT gate represents just another two-qubit operation, the circuit could be simpli-
fied. Indeed, the following circuit performs exactly the same transformation of the
initial state using only two CNOT gates:

q U2(−π, 0) U2(−π
2 , 0) U1(−π

2 )

a U3(− θ
2 ,−

π
2 , π) • U3(− θ

2 , π,
π
2 ) • U1(−π

2 ) |0〉

(6.17)

Despite the fact that both circuits describe the same mathematical transformation
of an initial state |ψ(0)〉q ⊗ |0〉a, they will perform differently on a noisy quantum
computer. This will be discussed below in Section 6.4.

In conclusion, the quantum circuits (6.13) and (6.17) calculate a single time step of
a stochastic photon-counting quantum trajectory starting from an initial state |ψ(0)〉q.
The ancillary qubit a plays the role of the photon detector and a random detection
record is generated by repeatedly measuring its state. The measurement result 1
represents the release of an excitation from the qubit q into the environment and
resets the qubit to its ground state. The quantum state along each random trajectory
is a pure state, such that it can be described by a state vector |ψ(t)〉q stored in the
qubit register. The dissipative dynamics described by the density matrix ρ̂ is obtained
by averaging over many different quantum trajectories. Technically, this is achieved
by executing the quantum circuit many times, each time starting from the same initial
state |ψ(0)〉q, and tracing over the measurement outcome of the ancillary qubit a.

To construct a single time step of the full dynamics given by Equation (6.1),
we combine the circuits (6.8), (6.10), (6.12), and (6.13) or (6.17) to the quantum
circuit shown in Figure 6.2(a). The Totter decomposition (6.5) approximates the
exact dynamics to order dt3, therefore, we must ensure that the following conditions
hold:

∆dt� 1 ,

ε
∣∣jk,k′∣∣ dt� 1 ,

Γk,0dt� 1 .
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a
a0

D−1(dt)
q0 Rz(∆dt

2 ) U−1,0(dt2 )
U1,−1(dt)

U−1,0(dt2 ) Rz(∆dt
2 )

q1 Rz(−∆dt
2 ) U1,0(dt2 ) U1,0(dt2 ) Rz(−∆dt

2 )
D1(dt)

a1

b

|01〉|10〉

|00〉

|11〉

Γ−1,0

Γ1,0 Γ−1,0

Γ1,0

j0,1 j0,−1

j1,−1

Figure 6.2: (a) Quantum circuit implementing a single time step dt
of the synchronization dynamics given by Equation (6.1). The Uk,0

gates are defined in Equation (6.10) and the U1,−1 gate is defined
in Equation (6.12). The Dk gates are chosen from Equations (6.13)
and (6.17) depending on the daily calibration of the quantum com-
puter, as discussed in Section 6.4. Note that the two dissipative steps
could also be applied sequentially to a single ancillary qubit. (b)
Sketch of the corresponding dynamics in the two-qubit state space.
The gates shown in white in (a) correspond to the free evolution of
the limit-cycle oscillator while the other circuit elements implement
the transitions of the same color in (b).

Since the dissipative time steps reset the qubits q0 and q1 independent of the state
of the other qubit, the gates Dk will also induce the transitions |X〉 → |±1〉, as
sketched in Figure 6.2(b). This is actually beneficial on a NISQ computer because
these transitions ensure that population cannot be trapped in the state |X〉. Moreover,
since the coherent signal is implemented by controlled gates, the additional level |X〉
still remains decoupled from the spin-1 system with respect to the unitary part of the
dynamics.

6.4 Methods

Having defined the mapping (6.3) and the corresponding quantum circuit to implement
the time evolution on the quantum simulator, shown in Figure 6.2, we now discuss
technical issues that are related to the execution of the quantum circuit on current
hardware. The publicly available NISQ computers at the IBM Q System consist of 5 or
14 fixed-frequency superconducting transmon qubits [IBM, 2019b]. The basis single-
qubit gates U1, U2, and U3 as well as measurement operations in the Ẑ eigenbasis
can be applied to each qubit. The qubits are connected according to the connectivity
diagram shown in Figures 6.3(a) and (b), and CNOT operations can be applied to pairs
of qubits that are connected by lines. Typical hardware parameters of the ibmqx2
quantum computer are summarized in Table 6.1. Since these parameters fluctuate
slowly in time, each quantum computer is automatically recalibrated once a day to
measure the current hardware parameters and to optimize the microwave pulses that
implement quantum gates.

IBM’s quantum computers are programmed by defining quantum circuits using
the python API Qiskit [Abraham et al., 2019a]. To initialize a quantum circuit,
the sizes of its quantum register and its classical register are specified. Quantum
and classical bits are initialized in the states |0〉 and 0, respectively. Frequently used
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Figure 6.3: (a) Sketch of the qubit connectivity of the ibmqx2 quan-
tum computer. Each circle represents a qubit. CNOT operations
can be applied to the pairs of qubits that are connected by a line.
(b) Sketch of the qubit connectivity of the ibmq_16_melbourne
quantum computer. (c) Comparison of the quantum circuits (6.13)
and (6.17) implementing a dissipative time step. (d) Sketch how dif-
ferent quantum circuits are grouped into batches. Green boxes repre-
sent readout calibration circuits, blueish boxes represent a time step
of the quantum simulation, and red boxes represent quantum-state-
tomography measurements to reconstruct the final state. Different
values of the system parameters are indicated by the shades of blue.
The upper row represents a time evolution for fixed system parameters
and the lower row represents a scan of a system parameter for a fixed
number of time steps.
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single and two-qubit gates, measurements operations in the Ẑ eigenbasis, and reset
operations are predefined in Qiskit and can be applied to the qubits to construct a
quantum circuit. This circuit is virtual in the sense that it represents an idealized
version of the quantum algorithm, which does not account for hardware restrictions
such as the set of basis quantum gates and the qubit connectivity scheme shown in
Figures 6.3(a) and (b). Therefore, the virtual circuit needs to be mapped onto the
quantum hardware in a so-called transpilation step. In this process, each virtual
qubit is assigned to a physical qubit of the quantum processor, SWAP operations are
inserted into the circuit to adapt controlled operations to the connectivity scheme,
and all gates are rewritten in terms of the basis gates U1, U2, U3, and CNOT.

To check the functionality of a quantum circuit before executing it on actual hard-
ware, Qiskit provides two types of simulators. The state vector simulator tracks the
full quantum state |ψ〉 of the qubit register throughout the quantum circuit, whereas
the so-called QASM_simulator simulates the behavior of actual quantum hardware
and returns only binary measurement results. All simulated data presented in this
chapter have been obtained using the QASM_simulator. The QASM_simulator pro-
vides a simple noise model that approximates the behavior of actual quantum hard-
ware and is implemented in the following way: After each single-qubit gate, a single-
qubit depolarizing error is applied, i.e., at a probability p the quantum state ρ̂ of the
processor is replaced by a completely mixed state [Nielsen and Chuang, 2011],

ρ̂→ p
1̂

2
+ (1− p)ρ̂ =

(
1− 3

4
p

)
ρ̂+

p

4

(
X̂ρ̂X̂ + Ŷ ρ̂Ŷ + Ẑρ̂Ẑ

)
.

This depolarizing error is followed by the simulation of a thermal relaxation error if a
gate time and the cryostat temperature of the quantum computer are specified. The
probability p of the depolarizing error is chosen such that the overall gate fidelity
matches the value determined in the last calibration of the quantum computer. For
two-qubit gates, a two-qubit depolarizing error is performed which is followed by the
simulation of two single-qubit relaxation errors. If a simulation of readout errors is
requested, the state of the qubit is measured and the measurement result is inverted
with a certain probability p. Again, p is chosen such that the readout fidelity of the
qubit reproduces the value measured in the last calibration.

If a virtual quantum circuit has been transpiled and tested, it can be executed on an
actual quantum computer. To this end, the circuit is translated into the OpenQASM
language [Cross et al., 2017], which is a text-based representation of the quantum
circuit that can be added to the job queue of the quantum computer. The user can
choose which quantum computer will execute the job and how many repetitions per
circuit should be done to collect the statistics of the measurement results. The queuing
system restricts the maximum number of repetitions per circuit to 8192.

To choose between the two quantum circuits (6.13) and (6.17) implementing the
dissipative time step, we execute both circuits for each possible pair of system and
ancillary qubits once after the daily recalibration of the quantum computer. The
initial state is |0〉q ⊗ |0〉a, therefore, both qubits should ideally remain in the state |0〉
such that the expected measurement results are 〈Ẑ〉 = 1 and 〈X̂〉 = 〈Ŷ 〉 = 0. Typical
results obtained on a NISQ computer are shown in Figure 6.3(c). The final state is
found to have a reduced 〈Ẑ〉 expectation value and a preferred phase in the x-y-plane
due to gate imperfections and crosstalk between the qubits. This effect is differently
pronounced for the two circuits (6.13) and (6.17). To minimize these detrimental
effects, we choose for each pair of adjacent qubits the quantum circuit that yields
the largest 〈Ẑ〉 expectation value. If the two circuits are equal with respect to this
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criterion, we select the circuit that minimizes 〈X̂〉2 + 〈Ŷ 〉2.
The queuing system allows one to group several quantum circuits to a so-called

batch job. Batch jobs are treated as single tasks such that all contained quantum
circuits are executed successively. We grouped quantum circuits that generated the
time evolution for different numbers of time steps, or that scanned different values
of a parameter, as shown in Figure 6.3(d). At the beginning of each batch job, two
calibration circuits have been added to measure the readout errors of the qubits q0 and
q1. These circuits initialize the qubits in the states |0〉 or |1〉, respectively, and measure
the qubit in the Ẑ eigenbasis directly after the initialization. The measurement results
give an estimate of each qubit’s current readout fidelity and Qiskit provides methods
to mitigate the readout errors of all subsequent measurements based on this data.
The following circuits of each batch job are used to calculate the time evolution of
the system or to scan a parameter. Here, the quantum computer is initialized in the
state joint ground state |00 . . . 0〉 and a sequence of time steps, shown in blueish colors
in Figure 6.3(d), is applied until the desired final time is reached. Then, the state of
the quantum processor is determined using a quantum state tomography, shown in
red. To calculate a time evolution for fixed system parameters, we vary the number
of time steps in each circuit, as shown in the upper part of Figure 6.1(d). To scan
the impact of a system parameter, such as the signal strength, we fix the number of
time steps per circuit and vary the system parameter, as shown in the lower part of
Figure 6.1(d).

To determine the final state of the time evolution, we perform a quantum state
tomography of the two qubits q0 and q1 encoding the spin-1 system [Altepeter et al.,
2004; Nielsen and Chuang, 2011]. The two-qubit state is decomposed in terms of
tensor products of Pauli matrices,

ρ̂ =
1

4

3∑
j,k=0

αj,kσ̂j ⊗ σ̂k , (6.18)

αj,k = Tr [(σ̂j ⊗ σ̂k)ρ̂] , (6.19)

where σ̂0 = 1̂, σ̂1 = X̂, σ̂2 = Ŷ , and σ̂3 = Ẑ. The coefficient α0,0 = 1 is fixed
by the normalization of the quantum state ρ̂. The remaining coefficients αj,k can be
determined by measuring the qubits q0 and q1 with respect to all nine combinations
of measurement bases {x, y, z} × {x, y, z}. To derive the connection between the
measurement results and the coefficients αj,k, we rewrite each operator as follows:

σ̂j = |+j〉 〈+j |+ ηj |−j〉 〈−j | , (6.20)

where j ∈ {0, 1, 2, 3}, η0 = +1, and η1,2,3 = −1. The state |±j〉 denotes an eigenstate
of the measurement in the σ̂j eigenbasis with eigenvalue ±1. For j = 0, the measure-
ment basis is the Ẑ eigenbasis. Measuring each combination {x, y, z} × {x, y, z} of
measurement directions N times, we can estimate the probabilities 0 ≤ P±,±j,k ≤ 1 to
obtain the eigenvalues ±1 in a measurement in the σ̂j and σ̂k eigenbases on the qubits
q1 and q0, respectively. The standard deviation of the estimate will decrease propor-
tional to 1/

√
N , i.e., we can determine P±,±j,k to arbitrary precision by increasing the

number of measurements. Inserting Equation (6.20) into Equation (6.19), we find a
relation between the expansion coefficients αj,k and the probabilities P±,±j,k ,

αj,k = P+,+
j,k + ηkP

+,−
j,k + ηjP

−,+
j,k + ηjηkP

−,−
j,k .
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In the case of noisy measurements, the state ρ̂ must be estimated from the measure-
ment results using a maximum likelihood method which ensures that ρ̂ is a physical
positive-semidefinite density matrix normalized to unit trace. This has been discussed
by Smolin et al. [2012] and the corresponding algorithm is already implemented in
Qiskit.

All data presented in the following sections have been collected on the publicly
accessible NISQ processor ibmqx2 between September 30 and October 7, 2019. Each
batch job has been executed with the maximum possible number of 8192 repetitions
per circuit and, unless stated otherwise, it has been repeated three times to rule out
drifts of the device parameters during data collection. The corresponding standard
deviation is indicated by the error bars, which are smaller than the plot markers.
Note that these error bars capture only statistical measurement errors and the short-
term stability of the device parameters on a timescale of hours. Since the parameters
of the quantum computer vary on a timescale of days, the quantum computers are
recalibrated on a daily basis. Therefore, numerical changes of the results obtained
for a small signal strength ε → 0 are expected if data obtained on different days
are compared. Simulations of the exact dynamics given by Equation (6.1) have been
performed using the python package QuTiP [Johansson et al., 2012].

6.5 Device characterization

We now study the quantum circuit shown in Figure 6.2(a) on actual quantum hard-
ware. In theory, one can iteratively apply the quantum circuit N times to evolve the
initial state of the quantum simulation to the correct final state at time T = Ndt up
to corrections of O(dt3). We now check whether this is also the case on an actual
NISQ computer by testing the different elements of the circuit. In a first step, we
will switch off the dissipative stabilization of the limit cycle and we will focus only
on the coherent signal. In a second step, we will investigate the performance of the
dissipative time evolution in the absence of an applied signal. Our findings will reveal
restrictions imposed by the limited capabilities of state-of-the-art quantum comput-
ers that require a modification of the quantum circuit shown in Figure 6.2(a). These
modifications will be discussed in Section 6.6.

Figure 6.4(a) shows the time evolution of the initial state |0〉 under the signal com-
ponents j0,±1 on a NISQ computer together with the corresponding result expected for
an ideal noise-free quantum computer. Controlled two-qubit gates are found to induce
strong depolarization errors that evolve the initial state |0〉 to a completely mixed state
after only a few Trotter steps. This result is also confirmed by simulations taking into
account the noise model of the IBM quantum processors provided in the python API
Qiskit, which are not shown here. We can check that the strong depolarizing errors
indeed stem from controlled two-qubit operations by replacing all controlled rotations
with the corresponding uncontrolled single-qubit rotation. The corresponding results
obtained for local single-qubit rotations are shown in Figure 6.4(b). Since the single-
qubit error rates are about an order of magnitude smaller than the two-qubit CNOT
error rate [Corcoles et al., 2019], the implementation of the signal using only uncon-
trolled single-qubit rotations reproduces the expected ideal noise-free result almost
perfectly over a much larger range of Trotter steps.

Moving on to multiple dissipative time steps in a row, we encounter another tech-
nical restriction of IBM’s quantum processors. Currently, measurement operations
can only be performed at the end of a quantum computation, i.e., the measurement
and subsequent reset operations of the ancillary qubits aj , which are contained in the
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Figure 6.4: Time evolution of the state |0〉 under the semiclassi-
cal signal components j0,±1 (markers) on a noisy intermediate-scale
quantum computer and ideal noise-free time evolution (lines). (a)
For controlled two-qubit Û±1,0 gates as used in the quantum circuit
shown in Figure 6.2(a), the state quickly evolves to a completely mixed
state. (b) For uncontrolled single-qubit Û±1,0 gates, the theoretically
expected oscillations of the populations is well reproduced experimen-
tally. Parameters are εdt = 0.1, j−1,0 = 0.5× e−πi/6, j1,0 = 1× e5πi/6,
j−1,1 = 0, and ∆/ε = 0. The data have been collected on the ibmqx2
processor on qubits q0 = 4 and q1 = 2.

Dk gates shown in Figure 6.2(a), are not permitted in the middle of a quantum circuit.
We can react to this restriction by using a new ancillary qubit in each time step and
by measuring all ancillary qubits at the end of the time evolution. As a consequence,
the maximum number of Trotter steps is bounded by the number of available ancillary
qubits on the quantum computer. Even worse, since SWAP operations are composed
of three CNOT gates and suffer strong depolarizing errors, we can only use ancillary
qubits that are adjacent to the system qubit qj , which limits us to at most four time
steps. At the moment, this technical constraint on the measurement and reset opera-
tions is the most severe limitation for the simulation of dissipative quantum systems
on IBM’s quantum processors. We expect that it will be lifted in the near future.

To identify suitable system and ancillary qubits, we search for groups of connected
qubits that perform well in the test of the dissipative time step discussed in Section 6.4.
The qubit with the highest connectivity is used as the system qubit and the other
ones serve as ancillary qubits. On the 5-qubit ibmqx2 device, the system qubit is
the central qubit 2 and its ancillary qubits are 0, 1, 3, and 4. On the 14-qubit
ibmq_16_melbourne device, the system qubits are either qubit 8 or qubit 11 and
the corresponding ancillary qubits are either 6, 7, and 9 or 3, 10, and 12, respectively.
The order in which the ancillary qubits interact with the system qubit is determined
by the test of the dissipative circuit shown in Figure 6.3(c): The ancillary qubits are
sorted in descending order with respect to the measured 〈Ẑ〉 expectation value such
that the smallest depolarizing errors are introduced in the first time step. Towards the
end of the time evolution, larger depolarizing errors can be tolerated since the signal
has already built up coherences. The order of the ancillary qubits is redetermined
each day after the recalibration of the quantum computer.

Figure 6.5 demonstrates the dissipative stablization of the limit-cycle state |0〉 if
no signal is applied, j±1,0 = j1,−1 = 0. As expected, the population of the target
state |0〉 dominates at the end of the time evolution independent of the chosen initial
state. However, the controlled two-qubit operations in the circuits (6.13) and (6.17)
implementing the dissipative time steps induce depolarizing errors that reduce the
population of the limit-cycle state |0〉 and will evolve the system to a completely
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mixed state in the long-time limit. As shown in Figure 6.4(a), this effect is small on
the considered timescale since we carefully select the ancillary qubits. In agreement
with the observation made in Figure 6.3(c), the noise induced by the dissipative limit-
cycle stabilization induces coherence in the limit-cycle state. The magnitude of this
noise is indicated by the gray circle. Note that this effect is not captured by the simple
noise model provided in Qiskit.

6.6 Dealing with hardware constraints

The main findings of Section 6.5 are that controlled two-qubit operations induce strong
depolarizing errors and that the current hardware does not allow measurement and
reset operations in the middle of a quantum circuit. Both effects are severe obsta-
cles to a digital quantum simulation of dissipative quantum systems. Luckily, the
paradigm of quantum synchronization allows us to adapt the quantum circuit shown
in Figure 6.2(a) to circumvent the limitations of IBM’s quantum processors.

Figure 6.4(a) shows that it is not feasible to perform the time evolution shown in
Figure 6.2(a) on a current NISQ computer because already the implementation of the
signal induces strong depolarizing errors already after a few time steps. However, in
the synchronization regime, most of the population remains in the limit-cycle state |0〉
even though a signal is applied to the limit-cycle oscillator. Therefore, it is possible
to consider a modified circuit where the controlled Û±1,0 gates are replaced by the
corresponding uncontrolled single-qubit rotations. If we additionally decide not to use
the squeezing signal, j−1,1 = 0, we obtain the quantum circuit shown in Figure 6.6(a)
which implements the signal without any controlled operations.

The transitions induced by this modified circuit are sketched in Figure 6.6(b). At
first sight, Figures 6.6(b) and the original transition scheme shown in Figure 6.2(b)
seem to represent completely different dynamics. However, we will now show that
both transition schemes are actually equivalent in the regime of synchronization on
a noisy quantum computer. The key point is that the signal strength in the regime
of synchronization is linearly proportional to a small dimensionless parameter 0 ≤
η � 1 as discussed in Section 5.2.6, which ensures that the signal Ĥext is only a small
perturbation to the limit-cycle state. Thus, the amplitudes of the coherences ρ±1,0 are
of order η and the populations of the states |±1〉 are of order η2. Therefore, they are
strongly suppressed as compared to the limit-cycle state |0〉 having a population of the
order of unity. Under these conditions, we can replace the controlled two-qubit gates
Û±1,0 by uncontrolled single-qubit rotations. In principle, the signal will now build
up coherences ρk,X between the spin-1 states and the state |X〉 and it will transfer
population to the state |X〉. However, both effects can be safely ignored, in particular
on a noisy system, because the coherences ρk,X and the population ρX,X are only of
order η3 and η4, respectively. Moreover, since the relaxation mechanism D±1 takes
the state |X〉 back to |∓1〉, there is no risk to trap population in |X〉.

Having eliminated all controlled gates from the part of the circuit that implements
the signal, we are only left with a few controlled two-qubit gates in the dissipative time
steps. These gates cannot be replaced since it is unavoidable to entangle the system
qubit with the ancillary qubits to induce non-unitary dynamics. However, since we
chose to switch off the squeezing drive, the system qubits q0 and q1 can now be assigned
independently to different physical qubits of the quantum processor. This allows us
to map the system qubits to spatially separated groups, e.g., the groups {6, 7, 8, 9}
and {3, 10, 11, 12} on the ibmq_16_melbourne device. On the 5-qubit ibmqx2,
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Figure 6.5: Characterization of the dissipative stabilization of the
limit-cycle state |0〉 if the signal is switched off, j±1,0 = j−1,1 = 0, on
a NISQ computer (markers) and theoretical expectation taking into
account noise (lines). The initial state is (a) |0〉, (b) |+1〉, (c) |−1〉,
and (d) |X〉. The gray circle defines the noise level of the coherences
due to the gate imperfections in the dissipative limit-cycle stabiliza-
tion. Parameters are Γ1,0dt = 0.2, ∆/Γ1,0 = 0, and Γ−1,0/Γ1,0 = 1.
Data have been collected on ibmqx2 on qubits q0 = 2 and q1 = 2 in
sequential runs.
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Figure 6.6: (a) Modified quantum circuit that uses only local single-
qubit rotations to implement the signal. In contrast to the ideal cir-
cuit shown in Figure 6.2(a), this modified circuit is compatible with
the limited capabilities of current NISQ computers. (b) Sketch of the
dynamics generated by the modified circuit. In the regime of synchro-
nization, this dynamics is equivalent to the one shown in Figure 6.2(b)
for j−1,1 = 0, because of the hierarchy ρX,X � ρ±1,±1 � ρ0,0.

the system qubits q0 and q1 can be sequentially assigned to the central physical qubit
2 in two consecutive runs.

Given the fixed qubit connectivity and the low SWAP fidelities of IBM’s current
quantum computers, the limit on the available Trotter steps imposed by the device
connectivity cannot be evaded. As a consequence, a quantum simulation of the steady-
state solution of Equation (6.1) is out of reach, but we are able to demonstrate the
transient buildup of synchronization, as shown in Figure 6.7.

The data show the time evolution of the populations and coherences if both a
signal and the dissipative limit-cycle stabilization are switched on. Comparing this
result to Figure 6.5(a), we find that the signal builds up the populations ρ0,−1 and ρ1,0

well beyond the noise level of the limit-cycle state. At the same time, the population
ρ0,0 is slightly reduced since the signal transfers population to the states |±1〉. Other
coherences are built up due to higher-order effects, but they remain below the noise
level of the limit-cycle state. In particular, the coherences ρk,X remain well below
this threshold, which justifies the replacement of controlled gates in the signal by
uncontrolled ones.

6.7 Experimental demonstration of quantum synchroniza-
tion

Figure 6.7 demonstrates that the modified quantum circuit shown in Figure 6.6(a)
is compatible with the technical restrictions of current NISQ computers. Using this
circuit, we now perform a digital quantum simulation of quantum synchronization
dynamics on the IBM Q System and we experimentally demonstrate typical features
of quantum synchronization. In a first step, we measure the final state ρ̂ after 3 time
steps as a function of the detuning ∆ and we reconstruct the phase distribution Sρ̂(φ)
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Figure 6.7: Demonstration of the onset of synchronization if both
a signal and the dissipative stabilization of the limit-cycle state are
switched on, j−1,0 = 1× e2πi/6, j1,0 = 2× e−πi/6, and j−1,1 = 0. The
signal builds up the coherences ρ1,0 and ρ0,−1 well beyond the noise
level of the limit cycle, indicated by the gray circle. The coherences
ρk,X remain well below the noise level, which justifies to use the sim-
plified circuit shown in Figure 6.6(a). Parameters are Γ1,0dt = 0.2,
∆/Γ1,0 = 0, ε/Γ1,0 = 0.25, and Γ−1,0/Γ1,0 = 1. Data have been col-
lected on the ibmqx2 quantum computer on the qubits q0 = 2 and
q1 = 2 in sequential runs.

using Equation (5.20),

Sρ̂(φ) =
3

8
√

2
|ρ1,0 + ρ0,−1| cos [φ+ arg(ρ1,0 + ρ0,−1)]

+
1

2π
|ρ1,−1| cos [2φ+ arg(ρ1,−1)] . (6.21)

The results are shown in Figure 6.8(a). For a detuned signal, |∆| > 0, synchroniza-
tion decreases since we keep the overall signal strength ε fixed. At the same time, the
relative phase φ between the limit-cycle oscillator and the signal changes. The mea-
surement results agree well with the theoretical prediction of the position of the peak
of Equation (6.21), which is indicated by the dashed black line. The small deviations
of the expected position of the maximum stems from a detuning dependence of the
limit-cycle stabilization mechanism due to device imperfections.

As discussed in Section 5.2.6, a nonzero phase distribution Sρ̂(φ) is only a neces-
sary condition for quantum synchronization since it could be caused by a signal that
is forcing the limit-cycle oscillator. Given a nonzero phase distribution, a sufficient
condition for the demonstration of quantum synchronization is that the coherences of
the density matrix increase linearly with the signal strength. To check this, we vary
the signal strength ε and reconstruct the final state ρ̂ by a quantum state tomography.
The corresponding results are shown in Figure 6.8(b). The coherences ρ1,0 and ρ0,−1

are built up proportional to ε, as one expects from a signal that contains only the
semiclassical signal components j±1,0. Moreover, the limit-cycle population remains
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Figure 6.8: (a) Phase distribution Sρ̂(φ) of the spin-1 limit-cycle os-
cillator as a function of the detuning ∆ between its natural frequency
and the signal frequency after N = 3 time steps. The solid line in-
dicates the theoretical expectation of the position of the maximum of
Sρ̂(φ), obtained by combining Equations (6.1) and (6.21). Parameters
are Γ−1,0/Γ1,0 = 1, Γ1,0dt = 0.2, ε/Γ1,0 = 0.25, j−1,0 = 2 × e2πi/6,
j1,0 = 2× e−πi/6, and j−1,1 = 0. (b) Populations and coherences as a
function of the signal strength ε for ∆/Γ1,0 = 0. The gray background
indicates the noise level of the coherences introduced in Figure 6.5.
(c) Upper panel: Phase of the coherences if the overall phase χ of
the signals, j±1,0e

iχ, is varied for ∆/Γ1,0 = 0 and ε/Γ1,0 = 0.25.
Lower panel: Demonstration of an interference-based quantum syn-
chronization blockade if the phase of only one of the signals is varied,
j−1,0 = eiχ×2×e−2πi/6 and j1,0 = 2×e−2πi/6 = const. Red data points
are the result obtained on a NISQ device, the solid blue line corre-
sponds to a simulation taking into account noise, and the dashed black
line describes the theory result. Parameters are Γ−1,0/Γ1,0 = 1.25,
Γ1,0dt = 0.2, ε/Γ1,0 = 0.25, and j−1,1 = 0. All data of this figure have
been collected on the ibmqx2 processor on qubits q0 = 2 and q1 = 2
in sequential runs.

mostly in the state |0〉 and the populations ρ0,0, ρ1,1, and ρ−1,−1 change only quadrat-
ically in the signal strength ε. Therefore, the applied signal perturbs the limit-cycle
state only weakly and we operate in the regime of quantum synchronization.

The population ρX,X is strongly suppressed as compared to the spin-1 coherences,
which justifies our approximation to replace controlled gates by uncontrolled ones
in the quantum circuit implementing the signal. The coherence ρ1,−1 is build up
quadratically in the signal strength ε, which is a higher-order effect. Indeed, using
Equation (5.13), we find that the nonzero first-order coherences ρ±1,0 give rise to a
nonzero coherence ρ1,−1 in a second-order process,

〈1| Lextρ̂
(1) |−1〉 = −i

[
〈1| Ĥext |0〉 ρ(0)

0,−1 − ρ
(0)
1,0 〈0| Ĥext |−1〉

]
∝ ε2 .

Note that the magnitude |ρ1,−1| remains below the noise level of the limit-cycle state,
as shown in Figure 6.7.

Having verified that we operate in the regime of synchronization, we demonstrate
in the upper panel of Figure 6.8(c) that we can tune the phase of the coherences
by changing the phase of the signal components. A global phase χ of the signal
coefficients,

j±1,0 → eiχj±1,0 ,

rotates the phase of the coherences as expected from theory. This allows us to ex-
perimentally demonstrate the effect of interference-based quantum synchronization
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blockade, which has been introduced in Section 5.7. By rotating only the phase of one
of the signal components,

j−1,0 → eiχj−1,0 ,

j1,0 = const ,

the relative phase between the coherences ρ1,0 and ρ0,−1 is changed. As shown in
Equation (6.21), synchronization will be strongly suppressed if the two coherences
interfere destructively, which is shown in Figure 6.8(c) for χ = 0 and χ = 2π. This
result is the first experimental demonstration of a genuinely quantum effect in syn-
chronization.

6.8 Summary

Our results demonstrate that state-of-the-art NISQ computers enable the study of
realistic dissipative quantum systems. Despite the fact that quantum algorithms to
simulate dissipative quantum systems have been discussed for quite some time [Lloyd
and Viola, 2001; Bacon et al., 2001; Kliesch et al., 2011], actual quantum hardware
was not powerful enough to implement them successfully. Therefore, only isolated
subproblems could be tested experimentally by García-Pérez et al. [2020]. We encoun-
tered obstacles to the simulation of the ideal quantum circuit shown in Figure 6.2(a),
too, namely,

(i) the two-qubit gate fidelities [Corcoles et al., 2019] are still at least an order of
magnitude too low,

(ii) missing qubit reset operations complicate the quantum circuit, and

(iii) the effective connectivity of the device is too low to compensate point (ii), mainly
because of point (i).

However, we were able to react to these limitations since we implemented quantum
synchronization dynamics. The perturbative structure of synchronization allowed us
to modify the quantum circuit to the form shown in Figure 6.6(a), which is compatible
with current NISQ computers.

In this way, we were able to experimentally demonstrate quantum synchronization
and, in particular, interference-based quantum synchronization blockade. A key ele-
ment to our success was the freedom to choose a limit-cycle stabilization mechanism
that is less complicated than the one of the quantum vdP oscillator and, in particular,
can be mapped to simple single-qubit relaxation processes on a quantum computer.
In this way, we solved the experimental challenge to implement both a highly nonlin-
ear dissipation mechanism and coherent control of the signal in a single experimental
platform.

Understanding dissipative quantum systems is of high relevance for quantum sens-
ing [Wiersig, 2016], quantum information processing [Metelmann and Clerk, 2015],
and quantum state preparation [Poyatos et al., 1996]. Simulating dissipative quantum
systems is much harder than simulating a comparable closed system since one has to
account for environmental degrees of freedom. For instance, even for a moderate net-
work size of approximately 20 limit-cycle oscillators, classical simulation approaches
will fail. Our results reveal that current algorithms to simulate dissipative quantum
systems will not be suited to study more complex dissipative quantum systems in the
near future. The perturbative structure of synchronization and our choice to switch off
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the squeezing drive put us into the special situation to be able to remove all controlled
operations form the implementation of the signal. In general, controlled operations
will constitute a crucial part of the time evolution, in particular in networks of dis-
sipative quantum systems, where exchange interactions such as the Û1,−1 gate, will
be indispensable. In this context, our results provide a guideline for the development
of novel quantum computers and novel algorithms enabling the study of dissipative
quantum systems on current NISQ devices.

The results and figures presented in this chapter have been published in parts in
[Koppenhöfer et al., 2020b].
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Chapter 7

Conclusion and Outlook

In recent years, significant experimental progress has been made to engineer micro-
and nanoscale systems that require a quantum-mechanical description of their dynam-
ics. In this thesis, we investigated the generation of nonclassical states in dissipative
quantum systems by continuous measurements, and we discussed quantum synchro-
nization phenomena in limit-cycle oscillators.

Nonclassical state generation

In the first part of this thesis, we studied how continuous measurements of dissipative
quantum systems, i.e., photon counting or homodyne detection, can be used to gen-
erate nonclassical states. The key element of our approach was to infer the current
state of a quantum system from the record of previous measurement results, which
allows one to perform a postselection of interesting nonclassical states.

In the case of an optomechanical system driven into mechanical limit-cycle mo-
tion, discussed in Chapter 3, the continuous measurement of the radiation leaking
out of the optical cavity allows one to track mechanical amplitude fluctuations. This
decreases the amplitude uncertainty of the mechanical state such that the mechanical
oscillation has a nonclassical sub-Poissonian phonon-number distribution. Our find-
ings complement previous studies that focused on the unconditional dynamics in the
absence of continuous measurements and predicted nonclassical mechanical states only
in the resolved-sideband regime κ� Ωmech. We showed that adding a continuous de-
tection significantly enlarges the range of parameters where nonclassical states can be
observed. Using our approach, nonclassical mechanical states can be generated even
in the unresolved-sideband regime κ > Ωmech. Optomechanical limit-cycle motion
has already been demonstrated in experiments, but it has not been possible to enter
parameter regimes where nonclassical limit cycles could be experimentally observed.
Our numerical study predicts a significant reduction of the mechanical amplitude fluc-
tuations particularly in parameter regimes that are inspired by typical experimental
values. Consequently, inducing nonclassical states by continuous measurements may
pave an experimentally feasible way to generate and observe nonclassical mechanical
limit-cycle motion in state-of-the-art optomechanical systems.

In Chapter 4, we took a broader view and investigated continuously monitored
quantum systems whose time evolution can be modeled by a piecewise-deterministic
stochastic process. The continuous deterministic part of the time evolution and
the stochastic quantum jump process define two competing time scales, 1/Γrel and
1/Γjump, respectively. We showed that the continuous time evolution induces a re-
laxation process towards well-defined states. By tuning the system parameters such
that the condition Γrel ≥ Γjump holds, the continuous time evolution can be made
dominant. Using this effect, we proposed a heralded state-preparation protocol to
generate deterministic quantum states. Focusing on a generic model of a nonclassi-
cal system, the Kerr nonlinear oscillator, we demonstrated that the protocol enables
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the generation of states with a negative Wigner function. This is an important result
because the Wigner function of the Kerr oscillator in the absence of a continuous mea-
surement must be strictly positive. Since an ensemble average over many quantum
trajectories reproduces the steady-state result, the nonclassicality of the target state
stabilized by the state generation protocol is carefully balanced by all other quantum
states that are explored along the stochastic quantum trajectory. We demonstrated
that small Schrödinger cat states can be generated by our protocol without the need
for feedback.

In the projects presented in Chapters 3 and 4, we chose a specific dissipative
quantum system and characterized the nonclassical states that can be generated by a
continuous measurement. An interesting open question is the reverse problem, namely,
given a certain quantum state, which system and which continuous measurement
generate this state? This question is highly relevant to quantum-enhanced metrology
[Pezzè et al., 2018; Degen et al., 2017], quantum information processing [Stahlke,
2014; Rahimi-Keshari et al., 2016; Veitch et al., 2012], and quantum error correction
in continuous-variable systems [Michael et al., 2016; Braunstein and van Loock, 2005],
which require various types of nonclassical states as a resource.

The nonlinear continuous part of the time evolution in the presence of a photon-
counting measurement is characterized by an effective non-Hermitian Hamiltonian.
Recently, non-Hermitian Hamiltonians attracted significant attention because of the
presence of exceptional points in their complex eigenvalue spectrum. At a n-th order
exceptional point, n + 1 eigenvalues and eigenvectors of the non-Hermitian Hamil-
tonian coalesce and the Hamiltonian becomes non-diagonalizable [Moiseyev, 2011].
This effect can be used to induce topological energy transfer between the coalescing
eigenmodes if the parameters of the Hamiltonian are varied along a closed loop in pa-
rameter space that encircles the exceptional point [Heiss, 1999; Xu et al., 2016]. Close
to the exceptional point, the energy splitting of the eigenmodes scales proportional to
the n+ 1-th root of these parameters. Wiersig [2016] suggested that this scaling gives
rise to an enhanced measurement sensitivity close to the exceptional point. Whether
this will also lead to an enhanced measurement precision for realistic measurement
protocols is the subject of a current controversy [Langbein, 2018; Lau and Clerk, 2018;
Chen et al., 2019; Zhang et al., 2019]. Effective non-Hermitian dynamics can be engi-
neered by balancing coherent interactions and dissipation in multimode systems, e.g.,
in photonic systems [Makris et al., 2008; Regensburger et al., 2012], cold atoms [Hang
et al., 2013], coupled optomechanical devices [Jing et al., 2014], and ferromagnets in
a microwave cavity that are driven by two phase-shifted magnetic fields [Grigoryan
et al., 2018; Soykal and Flatté, 2010]. Our results suggest that continuous measure-
ments of dissipative quantum systems in the regime Γrel � Γjump may provide another
experimentally feasible way to induce and investigate non-Hermitian dynamics.

Quantum synchronization

Our growing abilities to fabricate and control micro-, nano-, and optomechanical sys-
tems open the exciting possibility to study nonlinear dynamics in the quantum regime.
In the second part of this thesis, we focused on a particular effect in nonlinear dynam-
ics, namely, synchronization. Powerful mathematical methods have been developed to
formalize and study the problem of classical synchronization, e.g., two-timing meth-
ods to derive approximate equations of motion for the slowly varying amplitude and
phase of the oscillation, linear stability analysis, and bifurcation theory to classify and
graphically represent transitions between different types of oscillatory dynamics. The
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case of quantum synchronization, however, is much less understood. Different propos-
als for quantum limit-cycle oscillators have been put forward, which were guided by
an analysis of the semiclassical equations of motion that reproduce a classical limit-
cycle oscillator. Similarly, quantum synchronization measures have been proposed to
generalize different aspects of classical synchronization to the quantum regime.

In Chapter 5, we developed a framework for quantum synchronization with the aim
to provide a universal platform to study and classify quantum synchronization phe-
nomena. The framework is based on a quantum master equation approach to model
dissipative quantum systems, and on the perturbative nature of the synchronization
problem. It applies both to oscillator-based and spin-based quantum limit-cycle oscil-
lators. We identified the coherences between the energy eigenstates as the quantum-
mechanical resource of synchronization and found that coherences which transform
identically under phase rotations contribute collectively to phase localization. This
gives rise to an interference-based quantum synchronization blockade effect, which
complements a previously reported quantum synchronization blockade based on the
anharmonicity of the energy spectrum of a quantum limit-cycle oscillator.

An important building block of our framework is a rule how to choose the overall
signal strength such that the signal remains a small perturbation to the limit cycle.
This rule enables the comparison of different quantum limit-cycle oscillators and led
to the following results. First, we were able to derive an analytical formula describing
the upper boundary of the synchronization region in parameter space. Thereby, we
extended the well-known Arnold tongue to a snake-like split tongue. Second, we put
recent numerical studies into a broader picture and showed analytically that there is
an optimal amplitude of the squeezing signal beyond which squeezing does no longer
improve quantum synchronization. However, synchronization can still be further in-
creased by modifying the components of the semiclassical signal. Third, we derived a
tight upper bound on the maximum degree of quantum synchronization that is achiev-
able in the quantum regime and we constructed a limit cycle that reaches this bound
asymptotically. Finally, we proposed a practical scheme to stabilize this limit cycle,
which promises to be experimentally less challenging than the dissipative transition
scheme that stabilizes the quantum van der Pol oscillator.

The framework developed in this thesis can be applied to a variety of open ques-
tions in the field of quantum synchronization. First, one may exploit the perturbative
nature of the synchronization problem to relate the quantum synchronization measure
Sρ̂(ϕ) to other synchronization measures, such as the ones reviewed in Section 2.6.4.
In particular, it is desirable to establish an analytical connection with the power spec-
trum Sâ†â(ω) of the limit-cycle oscillator because power spectra can be easily measured
in experiments whereas the evaluation of the relative phase distribution Sρ̂(ϕ) requires
a rather complex quantum state tomography.

Second, our framework can be easily generalized to the case of mutually coupled
limit-cycle oscillators. The definition of a weak signal will then be replaced by a con-
dition on the strength of the mutual coupling, which ensures that the coupling is only
a small perturbation to the limit-cycle dynamics of the oscillators. This will open
the exciting possibility to revisit the controversy on the interplay of entanglement,
quantum discord, and quantum synchronization. The publications reviewed in Sec-
tion 2.6.4 consider very different limit-cycle oscillators and parameter regimes, ranging
from the equatorial spin-1 limit cycle and the van der Pol oscillator in the quantum
regime to an optomechanical limit cycle at large mechanical amplitudes. Moreover,
even limit-cycle oscillators implemented on the same experimental platform will dif-
fer in their degree of entanglement depending on the structure of their limit cycles.
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Thus, to put these very different results into a broader picture, a universal framework
is needed that allows one to compare synchronization across very different platforms.

Third, a framework for quantum synchronization of coupled limit-cycle oscillators
will be a useful starting point to construct a theory of quantum chimera states. Ku-
ramoto and Battogtokh [2002] discovered that synchronized and incoherent subpop-
ulations can coexist in networks of identical classical limit-cycle oscillators. Abrams
and Strogatz [2004] proposed to call these hybrid states chimera states in allusion to a
famous monster in Greek mythology, which is composed of a lion, a goat, and a snake.
First attempts to study chimera states in the quantum regime have been made, which
are mainly based on a discussion of the semiclassical equations of motion [Bastidas
et al., 2015; Viennot and Aubourg, 2016]. However, a quantum chimera state could be
defined independently of the classical limit of the equations of motion by considering
the relative phase distributions between different pairs of limit-cycle oscillators in the
network. The dynamics of chimera states in a network and its change as a function
of external parameters may have applications in quantum sensing. Spin-1 systems
will be an ideal platform to study networks of quantum limit-cycle oscillators since
they minimize the Hilbert-space dimension and provide a universal model for differ-
ent limit-cycle oscillators in the quantum regime. Using the perturbative structure of
the synchronization problem, even analytical calculations could be feasible for small
network sizes.

Finally, it will be interesting to generalize the bound on the maximum synchro-
nization derived in Section 5.6 to larger spin systems. This will shed light on the
transition from quantum synchronization, where noise plays a crucial role, to classical
synchronization. Moreover, it will allow one to establish a link between the discussion
of optimal synchronization in the quantum regime, presented in this thesis, and the
discussion of optimal synchronization in classical nonlinear dynamics [Harada et al.,
2010; Zlotnik and Li, 2012; Zlotnik et al., 2013; Tanaka, 2014; Hasegawa and Arita,
2014; Pikovsky, 2015]. The case of half-integer spin systems is particularly interest-
ing since these systems have an even number of levels and, thus, do not feature an
equatorial pure-state limit cycle.

Digital quantum simulation of dissipative quantum systems

In Chapter 6, we used digital quantum simulation to implement quantum synchroniza-
tion on a current quantum computer. We mapped the Hilbert space of a spin-1 system
to a two-qubit register and constructed a quantum circuit that evolves the two-qubit
state according to the spin-1 synchronization dynamics. Testing this circuit on an ac-
tual quantum computer, we identified several technical constraints of state-of-the-art
quantum hardware that hinder the digital quantum simulation of arbitrary dissipative
quantum systems. Nevertheless, the perturbative nature of synchronization allowed
us to simplify the quantum circuit such that we could circumvent the hardware con-
straints. We experimentally demonstrated quantum synchronization dynamics and
a genuinely quantum effect in synchronization, namely, quantum interference-based
synchronization blockade. On one hand, these results demonstrate that current quan-
tum computers have become powerful enough to study realistic dissipative quantum
systems if these systems provide suitable symmetries to adapt the quantum algorithm
to the technical restrictions of current hardware. On the other hand, they also reveal
that digital quantum simulation of arbitrary complex dissipative quantum systems is
still out of reach.
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Consequently, an important task for future research on quantum simulation of
dissipative quantum systems is to develop novel algorithms that are adapted to cur-
rent quantum hardware. A promising way is to generalize existing hybrid quantum-
classical algorithms, such as the variational quantum eigensolver [Peruzzo et al., 2014;
Kandala et al., 2017], used to calculate ground states of closed quantum systems, or
the quantum approximate optimization algorithm [Farhi et al., 2014], used to solve
optimization problems. These algorithms are based on the variational principle, i.e.,
they minimize the expectation value of an observable with respect to a set of param-
eters that characterize a class of quantum states. The algorithms are called hybrid
because most of the calculation is performed on classical hardware and the quantum
computer is only used to generate the quantum state and to efficiently evaluate its
expectation value. These tasks can be implemented by very short quantum circuits
that are compatible with current hardware. Importantly, the steady state of a quan-
tum master equation can be rephrased as a variational problem, too [Weimer, 2015].
Generalizations [Yoshioka et al., 2019] of these hybrid quantum-classical algorithms
for closed systems will open a way to study complex dissipative quantum systems,
such as large networks of limit-cycle oscillators, on current NISQ computers.
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Appendix A

Definitions and Conventions

In this appendix, we review the basic properties of the quantum harmonic oscillator
and of spin systems to define the notation used in this thesis.

A.1 Quantum harmonic oscillator

A.1.1 Operators

The Hamiltonian of a quantum harmonic oscillator is given by

ĤQHO =
1

2m
P̂ 2 +

1

2
mω2X̂2 ,

where m and ω denote the mass of the oscillator and its natural frequency of oscil-
lation, respectively. The position and momentum operators, X̂ and P̂ , satisfy the
commutation relation [X̂, P̂ ] = i~. Since position and momentum do not commute,
the eigenstates of the quantum harmonic oscillator must fulfill the Heisenberg uncer-
tainty relation 〈

(∆X̂)2
〉〈

(∆P̂ )2
〉
≥ ~2

4
,

where

〈(∆Ô)2〉 = 〈(Ô − 〈Ô〉)2〉 (A.1)

denotes the variance of the observable Ô. For the ground state of the quantum
harmonic oscillator, the Heisenberg uncertainty relation turns into an equality since
its position and momentum variances are given by〈

(∆X̂)2
〉

gs
= x2

zpf =
~

2mω
,〈

(∆P̂ )2
〉

gs
= p2

zpf =
~mω

2
. (A.2)

The positive quantities xzpf and pzpf are called the zero-point fluctuations and can be
used to introduce new dimensionless position and momentum operators

x̂ =
1√

2xzpf

X̂ and p̂ =
1√

2pzpf

P̂ ,
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which fulfill the commutation relation [x̂, p̂] = i. The Hamiltonian can be expressed
in terms of x̂ and p̂ in a symmetric form,

ĤQHO =
~ω
2

(x̂2 + p̂2) .

The dimensionless position and momentum operators can be combined to the annihi-
lation and creation operator

â =
1√
2

(x̂+ ip̂) and â† =
1√
2

(x̂− ip̂) , (A.3)

respectively, which fulfill the commutation relation
[
â, â†

]
= 1. The inverse relations

are given by

x̂ =
1√
2

(
â† + â

)
and p̂ =

i√
2

(
â† − â

)
.

Using these annihilation and creation operators, we can rewrite the Hamiltonian of
the quantum harmonic oscillator once again and obtain

ĤQHO = ~ω
(
â†â+

1

2

)
.

In the following, we will ignore the constant energy shift ~ω/2. As a short-hand
notation, we introduce the operator n̂ = â†â. Obviously, the commutation relation
[ĤQHO, n̂] = 0 holds, i.e., we can classify the eigenstates of the quantum harmonic
oscillator by the occupation number n,

n̂ |n〉 = n |n〉 .

The states |n〉 are called the Fock states. Finally, the commutation relations of â and
â† with the occupation-number operator n̂ are

[n̂, â] = −â and
[
n̂, â†

]
= â† .

These commutation relations imply the properties

â† |n〉 =
√
n+ 1 |n+ 1〉 and â |n〉 =

√
n |n− 1〉 ,

which justify to call â and â† annihilation and creation operators, respectively.

A.1.2 Coherent states

The eigenstates |α〉 of the annihilation operator, â |α〉 = α |α〉 are called coherent
states. They can be expressed in terms of Fock states as follows:

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 = e−|α|

2/2eαâ
† |0〉 . (A.4)

Coherent states can be obtained by displacing the vacuum state |0〉,

|α〉 = D̂(α) |0〉 ,

where the displacement operator D̂(α) is defined in Equation (2.45).
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A.2 Spin system

A.2.1 Operators

The spin-component operators Ŝx, Ŝy, and Ŝz of a spin system are defined by the
algebra [

Ŝj , Ŝk

]
= i~

∑
l

εjklŜl ,

where the indices take a value in {x, y, z} and εjkl is the Levi-Civita symbol defined
by

εjkl =


+1 if (j, k, l) is an even permutation of (x, y, z),
−1 if (j, k, l) is an odd permutation of (x, y, z),
0 else.

The Hermitian operators Ŝx, Ŝy, and Ŝz describe the spatial components of the spin
and can be combined to the operator

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z .

The eigenstates of a spin system are characterized by the quantum numbers S and
m, which are the eigenvalues associated with the operator Ŝ2 and one of the spin-
component operators, e.g., the Ŝz operator:

Ŝ2 |S,m〉 = ~2S(S + 1) |S,m〉 , (A.5)

Ŝz |S,m〉 = ~m |S,m〉 . (A.6)

The quantum number S can take integer or half-integer numbers, S = 0, 1
2 , 1,

3
2 , . . . ,

and m takes the values −S,−S + 1, ..., S − 1, S. By linear combination of the Ŝx and
Ŝy operators, one can construct the ladder operators

Ŝ± = Ŝx ± iŜy ,

which fulfill the commutation relations[
Ŝ2, Ŝ±

]
= 0 ,[

Ŝz, Ŝ±

]
= ±~Ŝ± ,

and act on the states |S,m〉 as follows:

Ŝ± |S,m〉 = ~
√
S(S + 1)−m(m± 1) |S,m± 1〉 . (A.7)

Equations (A.6) and (A.7) allow one to construct a matrix representation of the spin
operators. In this thesis, we represent the spin-1 states by the Euclidean basis vectors
in the following way:

|1,+1〉!

1
0
0

 , |1, 0〉!

0
1
0

 , |1,−1〉!

0
0
1

 .
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With this convention, the spin-1 operators have the matrix representation

Ŝx!
~√
2

0 1 0
1 0 1
0 1 0

 , Ŝy!
~√
2

0 −i 0
i 0 −i
0 i 0

 , Ŝz! ~

1 0 0
0 0 0
0 0 −1

 ,

and the two ladder operators are represented by

Ŝ+ ! ~

0
√

2 0

0 0
√

2
0 0 0

 , Ŝ−! ~

 0 0 0√
2 0 0

0
√

2 0

 .

A.2.2 Spin-coherent states

To define spin-coherent states, we follow the procedure outlined in [Radcliffe, 1971].
The ground state |0〉 of a harmonic oscillator is identified with the spin state |S,+S〉.1
The spin states |S,m〉 are relabeled according to the deviation of their Ŝz eigenvalue
from the maximum eigenvalue +S,

|p〉 ≡ |S, S − p〉 ,

In analogy to the occupation-number operator n̂ of a harmonic oscillator, we define a
spin-deviation operator

N̂ = S − Ŝz/~ ,

which fulfills N̂ |p〉 = p |p〉. The spin-lowering operator Ŝ− = Ŝx − iŜy is the creation
operator for spin deviations and corresponds to the creation operator â† of a harmonic
oscillator, with the restriction that the spin system only features a finite number of
2S + 1 eigenstates,

(Ŝ−)p |0〉 =

{
~p
√

(2S)!p!
(2S−p)! |p〉 if 0 ≤ p ≤ 2S ,

0 if p > 2S .

This behavior is reproduced by the following expression for the spin-lowering operator
in terms of the creation and annihilation operators of a harmonic oscillator [Holstein
and Primakoff, 1940]:

Ŝ− = ~
√

2Sâ†
√

1− â†â

2S
.

In analogy to Equation (A.4), a spin-coherent state is defined as the normalized ex-
ponential of the spin-lowering operator,

|µ〉 =
1

(1 + |µ|2)S
eµŜ−/~ |0〉 =

1

(1 + |µ|2)S

2S∑
p=0

√
(2S)!

p!(2S − p)!
µp |p〉 . (A.8)

This definition of a spin-coherent state converges to the coherent state of a harmonic
oscillator in the limit of a large spin, S � 1, where we have Ŝ− → ~

√
2Sâ†. Rescaling

1 Note that the convention of identifying the state |S,+S〉 with the ground state |0〉 of a harmonic
oscillator is compatible with the Holstein-Primakoff transformation [Holstein and Primakoff, 1940].
However, one could equally well identify the state |S,−S〉 with the ground state |0〉 [Arecchi et al.,
1972].
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x
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z
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θ

ϕ

Figure A.1: Definition of the rotated quantization axis z′.

the parameter µ = α/
√

2S appropriately, we obtain

lim
S→∞

|µ〉 = e−|α|
2/2eαâ

† |0〉 .

The spin-coherent states satisfy the completeness relation [Radcliffe, 1971]

2S + 1

π

∫
d2µ

1

(1 + |µ|2)2
|µ〉 〈µ| =

2S∑
p=0

|p〉 〈p| = 1 .

To interpret the parameter µ in Equation (A.8), it is instructive to investigate the
effect of changing the spin quantization axis by a spatial rotation

R̂(α, β, γ) = e−iαŜze−iβŜye−iγŜz ,

where α, β, and γ are the Euler angles [Brink and Satchler, 1968]. We consider a
rotated reference frame whose quantization axis z′ points along the original (θ, ϕ)
direction, as shown in Figure A.1, where the angles are defined on the intervals θ ∈
[0, π) and ϕ ∈ [0, 2π). The overlap between a state |µ〉 =

∣∣tan(θ/2)eiϕ
〉
in the original

reference frame and the ground state |0〉′ of the rotated reference frame is found to be
[Radcliffe, 1971]

〈µ|0〉′ =
〈
tan(θ/2)eiϕ

∣∣ R̂(ϕ, θ, 0) |0〉 = e−iϕS .

Hence, the state |µ〉 =
∣∣tan(θ/2)eiϕ

〉
is equivalent to the ground state |0〉′ in the

rotated reference frame up to an irrelevant global phase factor. We can use this
property to redefine spin-coherent states as follows:

|θ, ϕ〉 = R̂(ϕ, θ, 0) |S, S〉 = e−iϕŜze−iθŜy |S, S〉 . (A.9)

The corresponding completeness relation reads as

2S + 1

4π

∫
dϕdθ sin(θ) |θ, ϕ〉 〈θ, ϕ| = 1 .
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Expanding Equation (A.9) in the spin basis |S,m〉, we find

|θ, ϕ〉 =

S∑
m=−S

|S,m〉DS
m,S(ϕ, θ, 0) ,

where DS
m,n(ϕ, θ, 0) = 〈S,m| R̂(ϕ, θ, 0) |S, n〉 are the matrix elements of the rotation

operator R̂ and are tabulated, e.g., in the book by Brink and Satchler [1968].
In conclusion, a spin-coherent state |θ, ϕ〉 is the spin-S eigenstate |S,+S〉 with

respect to a quantization axis pointing along the spatial direction (θ, ϕ) in polar
coordinates. It converges to a coherent state in the large-spin limit, which allows one
to identify the latitude angle θ (North–South direction) with the amplitude degree
of freedom and the longitude angle ϕ (East–West direction) with the phase degree
of freedom. Alternatively, one can characterize a spin-coherent state by the complex
parameter µ = tan(θ/2)eiϕ, which is related to the angles (θ, ϕ) by a stereographic
projection.
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Appendix B

Quantum Synchronization
Formalism for Oscillator-Based
Systems

In this appendix, we provide a summary of the most important formulas if the frame-
work for quantum synchronization developed in Section 5.2 is applied to limit-cycle
oscillators, which are defined on the infinite-dimensional Hilbert space of a harmonic
oscillator. An example of such a limit-cycle oscillator is the quantum van der Pol
(vdP) oscillator introduced in Section 2.6.3.

Using the Equations (5.1) and (5.5), one defines a quantum limit-cycle oscillator
by specifying its free Hamiltonian,

Ĥsys = ~ω0â
†â ,

and a set of Lindblad operators Ôj that describe suitable dissipative transitions to
stabilize the limit cycle. In the case of a vdP oscillator, these operators are Ôg = â†

and Ôd = â2, but one could also consider other sets of operators, e.g., the combination
of transitions between single Fock states Ôn = |n〉 〈n− 1| suggested by Lörch et al.
[2017].

The phase-space picture of a quantum state can be obtained by calculating the
Husimi function Q(α) defined in Section 2.3,

Qρ̂(α) =
1

π
〈α| ρ̂ |α〉 ,

where |α〉 denotes a coherent state (A.4) of a harmonic oscillator. Its complex argu-
ment α can be rewritten in polar form, α = reiφ, where r corresponds to the classical
amplitude of oscillation and φ is the phase relevant for the quantum synchronization
formalism. Integrating out the amplitude r, we find

Pρ̂(φ) =

∫ ∞
0

dr rQρ̂(reiφ)

=
1

2π

1 +
∞∑

n 6=n′=0

Γ

(
n+ n′

2
+ 1

)
ei(n−n

′)φ

√
n!n′!

ρn′,n

 , (B.1)

where we introduced the notation ρn′,n = 〈n′| ρ̂ |n〉 for the matrix elements of the
density matrix with respect to Fock states. The Gamma function is denoted by Γ(x).
Deep in the quantum regime, we can restrict Equation (B.1) to the three lowest Fock
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states and obtain

Pρ̂(φ) =
1

2π

[
1 +

√
π

2

(
ρ1,0 +

3

2
√

2
ρ2,1

)
e−iφ +

1√
2
ρ2,0e

−2iφ + H.c.

]
.

Note that the notion of a phase is not uniquely defined [Lynch, 1995]. Alternative
approaches to define the notion of a phase are based on the Susskind-Glogower formal-
ism [Susskind and Glogower, 1964] or on choosing alternative phase-space quasiproba-
bility distributions, e.g., the Wigner function [Lee and Sadeghpour, 2013; Walter et al.,
2014]. In the Susskind-Glogower formalism, one defines a phase state as follows:

|φ〉 =
∞∑
n=0

einφ |n〉 .

The corresponding phase distribution is then given by

P SG
ρ̂ (φ) =

1

2π
〈φ| ρ̂ |φ〉 =

1

2π

[
1 +

∞∑
n 6=n′=0

ei(n−n
′)φρn′,n

]
.

Restricting the Hilbert space to the three lowest levels, we find

P SG
ρ̂ (φ) =

1

2π

[
1 + (ρ1,0 + ρ2,1) e−iφ + ρ2,0e

−2iφ + H.c.
]
.

The same result is obtained in the formalism by Barnett and Pegg [1986]. Alterna-
tively, one could replace the Husimi function by the Wigner function W(α) defined
in Section 2.3, decompose again its complex argument α = reiφ in polar coordinates,
and integrate out the radial direction r. The corresponding result is

PW
ρ̂ (φ) =

∫ ∞
0

dr rWρ̂(re
iφ)

=
1

2π

[
1 + 4

∞∑
n 6=m=0

min{m,n}∑
k=0

ei(n−m)φ (−1)min{m,n}−k√m!n!

k!(n− k)!(m− k)!

× |n−m| 2(n+m)/2−k−3Γ

(
m+ n

2
− k
)
ρm,n

]
.

Restricting again the Hilbert space to the three lowest levels, we obtain

PW
ρ̂ (φ) =

1

2π

[
1 +

√
π√
2

(
ρ1,0 +

1√
2
ρ2,1

)
e−iφ +

√
2ρ2,0e

−2iφ + H.c.

]
.

For all of these different methods to introduce a phase distribution, the phase-
rotation operator is given by

R̂(α) = eiαâ
†â .

The system Hamiltonian Ĥsys is obviously invariant under phase rotations,

R̂(α)ĤsysR̂
†(α) = Ĥsys .
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To ensure that Equation (5.1) is invariant under phase rotations, the Lindblad oper-
ators Ôj must satisfy the condition

R̂(α)ÔjR̂
†(α) = eiνj(α)Ôj ,

where νj(α) is a real phase. If this condition is satisfied, the limit cycle will be a
statistical mixture of Fock states,

ρ0,0

ρ1,1

ρ2,2

. . .

 ,

where the conditions 1 ≥ ρk,k ≥ 0 and
∑

k ρk,k = 1 hold.
Finally, we require that the signal Hamiltonian Ĥext is completely off-diagonal in

the Fock basis,

〈m| Ĥext

∣∣m′〉 ∝ 1− δm,m′ .

If this condition is satisfied, the calculation presented in Section 5.2.4 and below can
be straightforwardly generalized to the case of an oscillator-based system.
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Appendix C

Basis Gates of the IBM Q System

In this appendix, we define the basis gates of the IBM Q System and their matrix
representation. We choose to represent the single-qubit basis states |0〉 and |1〉 by the
following vectors:

|0〉!
(

1
0

)
, |1〉!

(
0
1

)
.

The IBM Q System provides four basis quantum gates, namely, a two-qubit CNOT
gate and the three single-qubit gates U1, U2, and U3. The single-qubit gates have the
following matrix representation [Abraham et al., 2019b]:

Û3(θ, ϕ, λ)!
(

cos(θ/2) − eiλ sin(θ/2)
eiϕ sin(θ/2) eiλ+iϕ cos(θ/2)

)
,

Û2(ϕ, λ) = U3(π/2, ϕ, λ)! 1√
2

(
1 −eiλ
eiϕ eiλ+iϕ

)
,

Û1(λ) = U3(0, 0, λ)!
(

1 0
0 eiλ

)
.

As described in Section 6.4, a quantum circuit is transpiled, i.e., rewritten in terms of
these four basis gates, before it is executed by the quantum computer. For instance,
rotations around the x, y, and z axis are rewritten as follows:

R̂x(θ) = Û3(θ,−π/2, π/2) ,

R̂y(θ) = Û3(θ, 0, 0) ,

R̂z(θ) = Û1(θ) .

The Pauli operators X̂, Ŷ , and Ẑ as well as the Hadamard gate Ĥ and the π/8-gate
T̂ introduced in Section 2.7.1 are rewritten as follows:

X̂ = Û3(π, 0, π) ,

Ŷ = Û3(π, π/2, π/2) ,

Ẑ = Û3(0, π, 0) ,

Ĥ = Û3(π/2, 0, π) ,

T̂ = Û1(π/4) .
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Finally, the matrix representation of the two-qubit operation Û1,−1(t) discussed in
Section 6.2 is based on the following representation of the two-qubit basis states:

|00〉 ≡ |0〉q1 ⊗ |0〉q0 !


1
0
0
0

 , |01〉 ≡ |0〉q1 ⊗ |1〉q0 !


0
1
0
0

 ,

|10〉 ≡ |1〉q1 ⊗ |0〉q0 !


0
0
1
0

 , |11〉 ≡ |1〉q1 ⊗ |1〉q0 !


0
0
0
1

 .
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List of Symbols

Symbol Meaning Defined in

1 identity superoperator
1̂ identity operator
! mapping between different representations of an operator or

state
PV

∫
Cauchy principal value integral

Latin symbols

â bosonic annihilation operator of optical mode Eq. (A.3)
A slowly-varying complex amplitude of vdP oscillator Eq. (2.95)
b̂ bosonic annihilation operator of mechanical mode Eq. (A.3)
B amplitude of optomechanical limit-cycle oscillation Eq. (2.63)
B̃ rescaled optomechanical amplitude B Eq. (2.65)
Bss steady-state value of optomechanical amplitude B
cµ expansion coefficient of state ρ̂ Eq. (4.15)

expansion coefficient of state |ψ〉 Eq. (4.30)
Cρ̂(λ, s) s-parametrized characteristic function of the state ρ̂ Eq. (2.44)
C optomechanical cooperativity Eq. (2.61)

cooperativity of assisted incoherent pumping process Eq. (5.56)
|C±(α)〉 Schrödinger cat state of amplitude α Eq. (2.91)
dµ expansion coefficient of perturbation σ̂ Eq. (4.22)

expansion coefficient of perturbation |σ〉 Eq. (4.35)
dN stochastic Poissonian increment Eq. (2.23)
dW stochastic Wiener increment Eq. (2.37)
D̂(λ) displacement operator Eq. (2.45)
D Lindblad dissipator Eq. (2.12)
êj environmental operators that couple to a quantum system Eq. (2.8)
Êr effect of a POVM Eq. (2.16)
E(x) ensemble-average of a stochastic process x
F Fano factor Eq. (2.74)
Fcond average Fano factor of conditional state Sec. 3.3
Fss Fano factor of unconditional steady state Sec. 3.3
g cavity-enhanced optomechanical coupling strength Eq. (2.60)

coherent drive of assisted incoherent pumping process Fig. 5.11
g0 bare optomechanical coupling strength Eq. (2.55)
gl expansion coefficient of Lextρ̂

(0) Eq. (5.27)
hµ eigenvalue of non-Hermitian Hamiltonian Ĥ − i~M̂ Eq. (4.28)
Ĥ Schrödinger-picture Hamiltonian

Hadamard gate Eq. (2.106)
H̃ interaction-picture Hamiltonian Eq. (2.2)
Ĥ0 Hamiltonian of a Kerr oscillator Eq. (2.78)
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Ĥ ′0(α) Hamiltonian of a Kerr oscillator in a displaced frame Eq. (2.89)
Ĥext Hamiltonian of external signal in synchronization Eq. (5.7)
Ĥlin linearized optomechanical Hamiltonian Eq. (2.59)
ĤOM optomechanical Hamiltonian Eq. (2.56)
Ĥsys free Hamiltonian of a limit-cycle oscillator Eq. (5.2)
H nonlinear Hamiltonian Eq. (4.25)
H(N) Hilbert space of a N -qubit register Eq. (2.103)
jk,l rescaled parameters tk,l of the external signal Ĥext Eq. (6.2)
Jk(x) k-th Bessel function of the first kind
K Kerr nonlinearity parameter Eq. (2.78)
kB Boltzmann constant
L unitary and unmonitored dissipative dynamics in SME Eq. (2.26)
L nonlinear continuous time evolution in SME Eq. (4.3)
L0 superoperator defining the QME of the Kerr oscillator Eq. (4.1)

superoperator defining the QME of a spin-1 system Eq. (5.5)
Lext superoperator of the external signal in synchronization Eq. (5.12)
M̂ correction to Hamiltonian due to continuous measurement Eq. (2.28)
nph mechanical th. occ. number in optomechanical system Eq. (2.58)
nth thermal occupation number Eq. (2.14)

optical th. occ. number in optomechanical system Eq. (2.58)
thermal occupation number of Kerr oscillator Eq. (2.80)

N(ρ̂) negativity measure based on Wigner function Wρ̂(α) Eq. (4.38)
Nmax maximum observable value of N(ρ̂) Sec. 4.5
Nopt photon number in optomechanical cavity Eq. (2.69)
Nu number of unmonitored Lindblad terms Eq. (2.19)
N correction to L due to continuous measurement Eq. (2.27)
ô perfectly monitored Lindblad operator Eq. (2.19)
Ôd Lindblad operator describing a dissipation process Eq. 5.2
Ôg Lindblad operator describing a energy gain process Fig. 5.2
Ôj Lindblad operator stabilizing the limit cycle Eq. (5.5)
Ôr,k measurement operator of a POVM Sec. 2.2.1
Or operation of a POVM Eq. (2.18)
O(x) order of x
p(F ) probability distribution of the Fano factor Sec. 3.4
pavg(ε) deformation measure of limit cycle Eq. (5.22)
pbare(n) average phonon-number distribution of mechanical state Sec. 3.5
pfluc(n) distribution of mechanical amplitude fluctuations Sec. 3.5
pmax(ε) deformation measure of limit cycle Eq. (5.23)
pss(n) optomechanical steady-state phonon-number distribution Sec. 3.5
pzpf quantum zero-point fluctuation of momentum Eq. (A.2)
P dimensionless drive power of Kerr oscillator Eq. (2.84)
Pρ̂(φ) phase distribution Eq. (5.3)
P̂|ψ〉 projector on subspace of |ψ〉 Eq. (4.33)
P̂⊥|ψ〉 projector on subspace perpendicular to |ψ〉 Eq. (4.34)
P momentum quadrature in a displaced or rotating frame
Pρ̂(α) Glauber-Sudarshan P function Eq. (2.46)
Pρ̂ projector on subspace of ρ̂ Eq. (4.19)
P⊥ρ̂ projector on subspace perpendicular to ρ̂ Eq. (4.20)
q0, q1 system qubits Chap. 6
q1, q2 numerical prefactors of the phase distribution Sρ̂(φ) Sec. 5.6
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Q position quadrature in a displaced or rotating frame
Qρ̂(α) Husimi Q function for continuous-variable systems Eq. (2.48)
Qρ̂(θ, ϕ) Husimi Q function for spin systems Eq. (2.53)
R̂(α) phase-rotation operator Eq. (5.4)
ŝj system ladder operators that couple to the environment Eq. (2.8)
Sρ̂(φ) shifted phase distribution Pρ̂(φ) Eq. (5.20)
Scond average von Neumann entropy along a quantum trajectory Eq. (3.11)
Sêj êk spectral function Eq. (2.11)
S±êj êk half-sided spectral function Eq. (2.10)
SvN von Neumann entropy Eq. (3.10)
Ŝx,y,z,± spin operators App. A.2
S(ρ̂) synchronization measure based on maximum of Sρ̂ Eq. (5.21)
ti,j coefficients of signal components of external signal Ĥext Eq. (5.7)
T̂ π/8 gate Eq. (2.107)
ûj unmonitored Lindblad operator in continuous measurement Eq. (2.19)
Û0(t) free time evolution of the limit-cycle oscillator Eq. (6.6)
Û1,2,3 basis gates of the IBM Q System App. C
Ûk,l(t) time evolution generated by signal components tk,l Eq. (6.6)
Wρ̂(α) Wigner function Eq. (2.47)
xzpf quantum zero-point fluctuation of position Eq. (A.2)
X̂ Pauli σ̂x operator Eq. (2.105)
|X〉 surplus state of the two-qubit register Eq. (6.4)
Ẑ Pauli σ̂z operator Eq. (2.102)

Greek symbols

α complex argument of a coherent state Eq. (A.4)
optical amplitude 〈â〉 in semiclassical approximation

α0 rescaled steady-state amplitude αss of Kerr oscillator Eq. (2.85)
α1 semiclassical drive of Kerr oscillator Eq. (2.78)
α2 squeezing drive of Kerr oscillator Eq. (2.78)
αlaser laser drive of optomechanical system Eq. (2.56)
αss steady-state value of α
β mechanical amplitude 〈b̂〉 in semiclassical approximation

parameter determining amplitude of classical vdP oscillator Eq. (2.94)
β offset of optomechanical limit-cycle oscillation Eq. (2.63)
βss steady-state value of β
γ rate of dissipative transition Eq. (2.13)
γd dissipative rate of damping process described by Ôd Fig. 5.2
γg dissipative rate of gain process described by Ôg Fig. 5.2
Γasy jump-rate asymmetry between pseudosteady states Eq. (4.40)
ΓBA backaction damping rate in optomechanical system Eq. (2.70)
Γjump average detection rate in photon-counting measurement Eq. (4.9)
Γk,0 dissipative transition rates |k〉 → |0〉 in spin-1 system Eq. (6.1)
Γmech mechanical damping rate in optomechanical system Eq. (2.58)
Γrel mech. amplitude relaxation rate in optomechanical system Eq. (3.6)

relaxation rate towards pseudosteady state Sec. 4.3
δ dimensionless detuning of Kerr oscillator Eq. (2.83)
δΩ mechanical frequency shift due to optical spring effect Eq. (2.71)
δΩss steady-state value of δΩ
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∆ detuning between optomechanical system and laser drive Eq. (2.57)
detuning between Kerr oscillator and drive Eq. (2.79)
detuning ∆1:1 between limit-cycle oscillator and signal Eq. (5.9)

∆m:n detuning in m : n synchronization Eq. (2.99)
〈(∆Ô)2〉 variance of the observable Ô Eq. (A.1)
ε accuracy of a digital quantum simulation Eq. (2.111)

nonlinearity of the classical vdP oscillator Eq. (2.94)
ε coupling strength for mutual synchronization Sec. 2.6

signal strength for unidirectional synchronization Eq. (5.1)
small parameter of perturbation in stability analysis Eq. (4.18)

ζ angle of relative strength of semiclassical signal components Eq. (5.39)
η overall detection efficiency of a continuous measurement Sec. 3.3

dimensionless expansion parameter in synchronization Eq. (5.25)
θ latitude angle of a spin-coherent state Eq. (A.9)
θk parameter of circuit Dk implementing single-qubit relaxation Eq. (6.14)
|θ, ϕ〉 spin-coherent state Eq. (2.52)
Θ(x) Heaviside theta function
κ energy decay rate of optical cavity in optomechanical system Eq. (2.58)

energy decay rate of Kerr oscillator Eq. (2.80)
λµ eigenvalue of superoperator L+N Eq. (4.11)
ξ LO signal in homodyne detection Eq. (2.35)
Π̂ parity operator Eq. (2.49)
ρ̂ density matrix in Schrödinger picture
ρ̃ density matrix in interaction-picture Eq. (2.1)
ρ̂′ density matrix in a displaced frame Eq. (2.88)
ρ̂(j) expansion coefficient of the density matrix Eq. (5.10)
ρj,k matrix element 〈j| ρ̂ |k〉 of ρ̂
ρ̂µ right eigenstate of a superoperator Eq. (4.11)
ρ̌µ left eigenstate of a superoperator Eq. (4.12)
ρ̂ps pseudosteady state Eq. (4.10)
σ̂ perturbation to state ρ̂ Eq. (4.18)
|σ〉 perturbation to state |ψ〉 Eq. (4.32)
τi,j rescaled signal coefficient ti,j of Ĥext Eq. (5.31)
τratio ratio between squeezing and semiclassical amplitude Eq. (5.37)
τ̂x,y,z,± spin-1/2 operators Eq. (6.7)
ϕ phase variable along limit cycle Eq. (2.93)

longitude angle of spin-coherent state Eq. (A.9)
phase of the measured quadrature in homodyne detection Eq. (2.35)

ϕopt phase in homodyne detection that minimizes Fcond Sec. 3.4
ϕss phase of the steady-state solution αss of Kerr oscillator Eq. (2.82)
φ phase of mechanical oscillation in optomechanical system Eq. (2.63)

relative phase φ1:1 between limit-cycle oscillator and signal Eq. (2.98)
φm:n relative phase in m : n synchronization Eq. (2.98)
χ relative phase between the semiclassical signal components Eq. (5.39)
χ̂ perturbed density matrix Eq. (4.18)
|χ〉 perturbed state vector Eq. (4.32)
|ψ〉 state vector
|ψ′〉 state vector in a displaced frame Eq. (4.39)
|ψµ〉 right eigenstate of non-Hermitian Hamiltonian Ĥ − i~M̂ Eq. (4.28)∣∣ψµ〉 left eigenstate of non-Hermitian Hamiltonian Ĥ − i~M̂ Eq. (4.29)
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|ψ〉ps pseudosteady state of a SSE Eq. (4.26)
ω0 natural frequency of oscillation of self-sustained oscillator Eq. (2.93)
ωcav optical frequency of optomechanical cavity Eq. (2.54)
ωhar frequency of a harmonic drive applied to Kerr oscillator Eq. (2.76)
ωlaser frequency of optomechanical laser drive Eq. (2.57)
ωpar frequency of parametric drive applied to Kerr oscillator Eq. (2.77)
Ωmech mechanical frequency of the optomechanical system Eq. (2.56)





165

Bibliography

Abraham, H., I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, G. Alexandrowics,
E. Arbel, A. Asfaw, C. Azaustre, P. Barkoutsos, G. Barron, L. Bello, Y. Ben-Haim,
L. S. Bishop, S. Bosch, D. Bucher, et al. (2019a): Qiskit: An Open-source Frame-
work for Quantum Computing, https://www.doi.org/10.5281/zenodo.2562110.

Abraham, H., I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, G. Alexandrowics,
E. Arbel, A. Asfaw, C. Azaustre, P. Barkoutsos, G. Barron, L. Bello, Y. Ben-
Haim, L. S. Bishop, S. Bosch, D. Bucher, et al. (2019b): Qiskit User Guide,
https://qiskit.github.io/ibmqx-user-guides/full-user-guide/002-The_
Weird_and_Wonderful_World_of_the_Qubit/004-advanced_qubit_gates.html.

Abrams, D. M. and S. H. Strogatz (2004): Chimera States for Coupled Oscillators.
Phys. Rev. Lett. 93, 174102.

Adler, R. (1946): A Study of Locking Phenomena in Oscillators. P. IRE 34, 351.

Agarwal, G. S. (1981): Relation between atomic coherent-state representation, state
multipoles, and generalized phase-space distributions. Phys. Rev. A 24, 2889.

Agrawal, D. K., J. Woodhouse, and A. A. Seshia (2013): Observation of Locked Phase
Dynamics and Enhanced Frequency Stability in Synchronized Micromechanical Os-
cillators. Phys. Rev. Lett. 111, 084101.

Alsing, P. and H. J. Carmichael (1991): Spontaneous dressed-state polarization of a
coupled atom and cavity mode. Quantum Opt. 3, 13.

Altepeter, J. B., D. F. V. James, and P. G. Kwiat (2004): Quantum State Estimation.
In: Paris, M. and J. Rehacek (editors), Qubit Quantum State Tomography (Springer
Verlag, Berlin Heidelberg), pages 113–145.

Ameri, V., M. Eghbali-Arani, A. Mari, A. Farace, F. Kheirandish, V. Giovannetti,
and R. Fazio (2015): Mutual information as an order parameter for quantum syn-
chronization. Phys. Rev. A 91, 012301.

Anetsberger, G., O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M.
Weig, J. P. Kotthaus, and T. J. Kippenberg (2009): Near-field cavity optomechanics
with nanomechanical oscillators. Nat. Phys. 5, 909.

Arcizet, O., P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann (2006):
Radiation-pressure cooling and optomechanical instability of a micromirror. Nature
444, 71.

Arecchi, F. T., E. Courtens, R. Gilmore, and H. Thomas (1972): Atomic Coherent
States in Quantum Optics. Phys. Rev. A 6, 2211.

Armour, A. D. and D. A. Rodrigues (2012): Quantum dynamics of a mechanical
resonator driven by a cavity. Comptes Rendus Physique 13, 440.

https://dx.doi.org/10.5281/zenodo.2562110
https://dx.doi.org/10.5281/zenodo.2562110
https://www.doi.org/10.5281/zenodo.2562110
https://qiskit.github.io/ibmqx-user-guides/full-user-guide/
https://qiskit.github.io/ibmqx-user-guides/full-user-guide/002-The_Weird_and_Wonderful_World_of_the_Qubit/004-advanced_qubit_gates.html
https://qiskit.github.io/ibmqx-user-guides/full-user-guide/002-The_Weird_and_Wonderful_World_of_the_Qubit/004-advanced_qubit_gates.html
https://dx.doi.org/10.1103/PhysRevLett.93.174102
https://dx.doi.org/10.1109/JRPROC.1946.229930
https://dx.doi.org/10.1103/PhysRevA.24.2889
https://dx.doi.org/10.1103/PhysRevA.24.2889
https://dx.doi.org/10.1103/PhysRevLett.111.084101
https://dx.doi.org/10.1103/PhysRevLett.111.084101
https://dx.doi.org/10.1103/PhysRevLett.111.084101
https://dx.doi.org/10.1088/0954-8998/3/1/003
https://dx.doi.org/10.1088/0954-8998/3/1/003
https://dx.doi.org/10.1007/b98673
https://dx.doi.org/10.1103/PhysRevA.91.012301
https://dx.doi.org/10.1103/PhysRevA.91.012301
https://doi.org/10.1038/nphys1425
https://doi.org/10.1038/nphys1425
http://www.nature.com/articles/nature05244
https://dx.doi.org/10.1103/PhysRevA.6.2211
https://dx.doi.org/10.1103/PhysRevA.6.2211
https://doi.org/10.1016/j.crhy.2012.03.006
https://doi.org/10.1016/j.crhy.2012.03.006


166 BIBLIOGRAPHY

Arute, F., K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro,
R. Collins, et al. (2019): Quantum supremacy using a programmable superconducting
processor. Nature 574, 505.

Aschoff, J. (1965): Circadian Rhythms in Man. Science 148, 1427.

Aspelmeyer, M., T. J. Kippenberg, and F. Marquardt (2014): Cavity optomechanics.
Rev. Mod. Phys. 86, 1391.

Bacon, D., A. M. Childs, I. L. Chuang, J. Kempe, D. W. Leung, and X. Zhou (2001):
Universal simulation of Markovian quantum dynamics. Phys. Rev. A 64, 062302.

Bagheri, M., M. Poot, L. Fan, F. Marquardt, and H. X. Tang (2013): Photonic Cavity
Synchronization of Nanomechanical Oscillators. Phys. Rev. Lett. 111, 213902.

Banaszek, K. and K. Wódkiewicz (1996): Direct Probing of Quantum Phase Space by
Photon Counting. Phys. Rev. Lett. 76, 4344.

Bardeen, J. and W. H. Brattain (1948): The Transistor, A Semi-Conductor Triode.
Phys. Rev. 74, 230.

Barenco, A., C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter (1995): Elementary gates for quan-
tum computation. Phys. Rev. A 52, 3457.

Barnett, S. M. and D. T. Pegg (1986): Phase in quantum optics. J. Phys. A-Math.
Gen. 19, 3849.

Bartolo, N., F. Minganti, W. Casteels, and C. Ciuti (2016): Exact steady state of
a Kerr resonator with one- and two-photon driving and dissipation: Controllable
Wigner-function multimodality and dissipative phase transitions. Phys. Rev. A 94,
033841.

Bastidas, V. M., I. Omelchenko, A. Zakharova, E. Schöll, and T. Brandes (2015):
Quantum signatures of chimera states. Phys. Rev. E 92, 062924.

Bekker, C., R. Kalra, C. Baker, and W. P. Bowen (2017): Injection locking of an
electro-optomechanical device. Optica 4, 1196.

Benioff, P. (1980): The computer as a physical system: A microscopic quantum me-
chanical Hamiltonian model of computers as represented by Turing machines. J.
Stat. Phys. 22, 563.

Bennett, C. H. and G. Brassard (2014): Quantum Cryptography: Public Key Distri-
bution and Coin Tossing. Theor. Comput. Sci. 560, 7.

Benz, S. P. and C. J. Burroughs (1991): Coherent emission from two-dimensional
Josephson junction arrays. Appl. Phys. Lett. 58, 2162.

Besse, J.-C., S. Gasparinetti, M. C. Collodo, T. Walter, P. Kurpiers, M. Pechal,
C. Eichler, and A. Wallraff (2018): Single-Shot Quantum Nondemolition Detection
of Individual Itinerant Microwave Photons. Phys. Rev. X 8, 021003.

Bianchetti, R., S. Filipp, M. Baur, J. M. Fink, C. Lang, L. Steffen, M. Boissonneault,
A. Blais, and A. Wallraff (2010): Control and Tomography of a Three Level Super-
conducting Artificial Atom. Phys. Rev. Lett. 105, 223601.

https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://dx.doi/org/10.1126/science.148.3676.1427
https://dx.doi.org/10.1103/RevModPhys.86.1391
https://dx.doi.org/10.1103/PhysRevA.64.062302
https://dx.doi.org/10.1103/PhysRevLett.111.213902
https://dx.doi.org/10.1103/PhysRevLett.111.213902
https://dx.doi.org/10.1103/PhysRevLett.76.4344
https://dx.doi.org/10.1103/PhysRevLett.76.4344
https://dx.doi.org/10.1103/PhysRev.74.230
https://dx.doi.org/10.1103/PhysRevA.52.3457
https://dx.doi.org/10.1103/PhysRevA.52.3457
http://stacks.iop.org/0305-4470/19/i=18/a=030
https://dx.doi.org/10.1103/PhysRevA.94.033841
https://dx.doi.org/10.1103/PhysRevA.94.033841
https://dx.doi.org/10.1103/PhysRevA.94.033841
https://dx.doi.org/10.1103/PhysRevE.92.062924
https://dx.doi.org/10.1364/OPTICA.4.001196
https://dx.doi.org/10.1364/OPTICA.4.001196
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF01011339
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1063/1.104993
https://doi.org/10.1063/1.104993
https://dx.doi.org/10.1103/PhysRevX.8.021003
https://dx.doi.org/10.1103/PhysRevX.8.021003
https://dx.doi.org/10.1103/PhysRevLett.105.223601
https://dx.doi.org/10.1103/PhysRevLett.105.223601


BIBLIOGRAPHY 167

Bimbard, E., N. Jain, A. MacRae, and A. I. Lvovsky (2010): Quantum-optical state
engineering up to the two-photon level. Nat. Photonics 4, 243.

Bishop, R. F. and A. Vourdas (1994): Displaced and squeezed parity operator: Its role
in classical mappings of quantum theories. Phys. Rev. A 50, 4488.

Boccaletti, S., J. Kurths, G. Osipov, D. Valladares, and C. Zhou (2002): The syn-
chronization of chaotic systems. Phys. Rep. 366, 1.

Bose, S., P. L. Knight, M. B. Plenio, and V. Vedral (1999): Proposal for Teleportation
of an Atomic State via Cavity Decay. Phys. Rev. Lett. 83, 5158.

Braunstein, S. L. and P. van Loock (2005): Quantum information with continuous
variables. Rev. Mod. Phys. 77, 513.

Breuer, H.-P. and F. Petruccione (2002): The Theory of Open Quantum Systems
(Oxford University Press, Oxford).

Briant, T., P. Cohadon, M. Pinard, and A. Heidmann (2003): Optical phase-space
reconstruction of mirror motion at the attometer level. Eur. Phys. J. D 22, 131.

Brif, C. and A. Mann (1999): Phase-space formulation of quantum mechanics and
quantum-state reconstruction for physical systems with Lie-group symmetries. Phys.
Rev. A 59, 971.

Brink, D. M. and G. R. Satchler (1968): Angular momentum (Clarendon Press, Ox-
ford).

Brody, D. C. and E.-M. Graefe (2012): Mixed-State Evolution in the Presence of Gain
and Loss. Phys. Rev. Lett. 109, 230405.

Brunelli, M., O. Houhou, D. W. Moore, A. Nunnenkamp, M. Paternostro, and
A. Ferraro (2018): Unconditional preparation of nonclassical states via linear-and-
quadratic optomechanics. Phys. Rev. A 98, 063801.

Buck, J. and E. Buck (1968): Mechanism of Rhythmic Synchronous Flashing of Fire-
flies. Science 159, 1319.

Buot, F. A. (1974): Method for calculating TrHn in solid-state theory. Phys. Rev. B
10, 3700.

Cabrillo, C., J. I. Cirac, P. García-Fernández, and P. Zoller (1999): Creation of en-
tangled states of distant atoms by interference. Phys. Rev. A 59, 1025.

Caldeira, A. O. and A. J. Leggett (1981): Influence of Dissipation on Quantum Tun-
neling in Macroscopic Systems. Phys. Rev. Lett. 46, 211.

Carmichael, H. J. (2002): Statistical Methods in Quantum Optics 1. Master Equations
and Fokker-Planck Equations (Springer Verlag, Berlin Heidelberg), 1st corrected
edition.

Carmichael, H. J. (2008): Statistical Methods in Quantum Optics 2. Non-Classical
Fields (Springer Verlag, Berlin Heidelberg), 1st edition.

Carvalho, A. R. R., M. Busse, O. Brodier, C. Viviescas, and A. Buchleitner (2007):
Optimal Dynamical Characterization of Entanglement. Phys. Rev. Lett. 98, 190501.

https://doi.org/10.1038/nphoton.2010.6
https://doi.org/10.1038/nphoton.2010.6
https://dx.doi.org/10.1103/PhysRevA.50.4488
https://dx.doi.org/10.1103/PhysRevA.50.4488
https://doi.org/10.1016/S0370-1573(02)00137-0
https://doi.org/10.1016/S0370-1573(02)00137-0
https://dx.doi.org/10.1103/PhysRevLett.83.5158
https://dx.doi.org/10.1103/PhysRevLett.83.5158
https://dx.doi.org/10.1103/RevModPhys.77.513
https://dx.doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1140/epjd/e2002-00217-9
https://doi.org/10.1140/epjd/e2002-00217-9
https://dx.doi.org/10.1103/PhysRevA.59.971
https://dx.doi.org/10.1103/PhysRevA.59.971
https://dx.doi.org/10.1103/PhysRevLett.109.230405
https://dx.doi.org/10.1103/PhysRevLett.109.230405
https://dx.doi.org/10.1103/PhysRevA.98.063801
https://dx.doi.org/10.1103/PhysRevA.98.063801
https://dx.doi.org/10.1126/science.159.3821.1319
https://dx.doi.org/10.1126/science.159.3821.1319
https://dx.doi.org/10.1103/PhysRevB.10.3700
https://dx.doi.org/10.1103/PhysRevA.59.1025
https://dx.doi.org/10.1103/PhysRevA.59.1025
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
https://dx.doi.org/10.1103/PhysRevLett.98.190501


168 BIBLIOGRAPHY

Chagnac-Amitai, Y. and B. W. Connors (1989): Synchronized Excitation and Inhibi-
tion Driven by Intrinsically Bursting Neurons in Neocortex. J. Neurophysiol. 62,
1149.

Chan, J., T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher,
M. Aspelmeyer, and O. Painter (2011): Laser cooling of a nanomechanical oscillator
into its quantum ground state. Nature 478, 89.

Chen, C., L. Jin, and R.-B. Liu (2019): Sensitivity of parameter estimation near the
exceptional point of a non-Hermitian system. N. J. Phys. 21, 083002.

Childress, L., M. P. Schmidt, A. D. Kashkanova, C. D. Brown, G. I. Harris, A. Aiello,
F. Marquardt, and J. G. E. Harris (2017): Cavity optomechanics in a levitated
helium drop. Phys. Rev. A 96, 063842.

Chiorescu, I., Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij (2003): Coherent
Quantum Dynamics of a Superconducting Flux Qubit. Science 299, 1869.

Chow, J. and J. Gambetta (2020): Quantum Takes Flight: Moving from Laboratory
Demonstrations to Building Systems. IBM Research Blog, January 8.

Chu, Y., P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich, and R. J. Schoelkopf (2018):
Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator.
Nature 563, 666.

Clausen, J., M. Dakna, L. Knöll, and D. G. Welsch (1999): Conditional quantum-state
transformation at a beam splitter. J. of Opt. B-Quantum S. O. 1, 332.

Cohen, I. and A. Retzker (2014): Proposal for Verification of the Haldane Phase Using
Trapped Ions. Phys. Rev. Lett. 112, 040503.

Cohen, J. D., S. M. Meeneha, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini,
F. Marsili, M. D. Shaw, and O. Painter (2015): Phonon counting and intensity
interferometry of a nanomechanical resonator. Nature 520, 522.

Cohen, L. and M. O. Scully (1986): Joint Wigner distribution for spin-1/2 particles.
Found. Phys. 16, 295.

Corcoles, A. D., A. Kandala, A. Javadi-Abhari, D. T. McClure, A. W. Cross,
K. Temme, P. D. Nation, M. Steffen, and J. M. Gambetta (2019): Challenges
and Opportunities of Near-Term Quantum Computing Systems. arXiv preprint
1910.02894.

Cross, A. W., L. S. Bishop, J. A. Smolin, and J. M. Gambetta (2017): Open Quantum
Assembly Language. arXiv preprint 1707.03429.

Dalibard, J., Y. Castin, and K. Mølmer (1992): Wave-function approach to dissipative
processes in quantum optics. Phys. Rev. Lett. 68, 580.

Davis-Tilley, C., C. K. Teoh, and A. D. Armour (2018): Dynamics of many-body
quantum synchronisation. N. J. Phys. 20, 113002.

Degen, C. L., F. Reinhard, and P. Cappellaro (2017): Quantum sensing. Rev. Mod.
Phys. 89, 035002.

Deutsch, D. and R. Jozsa (1992): Rapid solution of problems by quantum computation.
P. R. Soc. Lond. A Mat. 439, 553.

http://www.nature.com/articles/nature10461
http://www.nature.com/articles/nature10461
https://doi.org/10.1088/1367-2630/ab32ab
https://doi.org/10.1088/1367-2630/ab32ab
https://dx.doi.org/10.1103/PhysRevA.96.063842
https://dx.doi.org/10.1103/PhysRevA.96.063842
https://science.sciencemag.org/content/299/5614/1869
https://science.sciencemag.org/content/299/5614/1869
https://www.ibm.com/blogs/research/2020/01/quantum-volume-32/
https://www.ibm.com/blogs/research/2020/01/quantum-volume-32/
https://www.nature.com/articles/s41586-018-0717-7
https://dx.doi.org/10.1103/PhysRevLett.112.040503
https://dx.doi.org/10.1103/PhysRevLett.112.040503
http://www.nature.com/articles/nature14349
http://www.nature.com/articles/nature14349
https://doi.org/10.1007/BF01882690
https://arxiv.org/abs/1910.02894
https://arxiv.org/abs/1910.02894
https://arxiv.org/abs/1910.02894
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://dx.doi.org/10.1103/PhysRevLett.68.580
https://dx.doi.org/10.1103/PhysRevLett.68.580
http://stacks.iop.org/1367-2630/20/i=11/a=113002
http://stacks.iop.org/1367-2630/20/i=11/a=113002
https://dx.doi.org/10.1103/RevModPhys.89.035002
https://dx.doi.org/10.1098/rspa.1992.0167


BIBLIOGRAPHY 169

Doherty, A. C. and K. Jacobs (1999): Feedback control of quantum systems using
continuous state estimation. Phys. Rev. A 60, 2700.

Dörfler, F., M. Chertkov, and F. Bullo (2013): Synchronization in complex oscillator
networks and smart grids. P. Natl. Acad. Sci. USA 110, 2005.

Drummond, P. D. and D. F. Walls (1980): Quantum theory of optical bistability. I.
Nonlinear polarisability model. J. Phys. A-Math. Gen. 13, 725.

Dum, R., P. Zoller, and H. Ritsch (1992): Monte Carlo simulation of the atomic
master equation for spontaneous emission. Phys. Rev. A 45, 4879.

Eichenfield, M., J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter (2009):
Optomechanical crystals. Nature 462, 78.

Ekinci, K. L. and M. L. Roukes (2005): Nanoelectromechanical systems. Rev. Sci.
Instrum. 76, 061101.

Evers, F. and A. D. Mirlin (2000): Fluctuations of the Inverse Participation Ratio at
the Anderson Transition. Phys. Rev. Lett. 84, 3690.

Fano, U. (1957): Description of States in Quantum Mechanics by Density Matrix and
Operator Techniques. Rev. Mod. Phys. 29, 74.

Farhi, E., J. Goldstone, and S. Gutmann (2014): A Quantum Approximate Optimiza-
tion Algorithm. arXiv preprint 1411.4028.

Ferrari, F., R. Viana, S. Lopes, and R. Stoop (2015): Phase synchronization of coupled
bursting neurons and the generalized Kuramoto model. Neural Networks 66, 107.

Feynman, R. P. (1982): Simulating physics with computers. Int. J. Theor. Phys. 21,
467.

Feynman, R. P. (2005): Negative Probability. In: Hiley, B. and F. D. Peat (editors),
Quantum Implications: Essays in Honour of David Bohm (Routledge), pages 235–
248.

Fukuda, D., G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino,
H. Ishii, T. Itatani, S. Inoue, and T. Zama (2011): Titanium-based transition-edge
photon number resolving detector with 98% detection efficiency with index-matched
small-gap fiber coupling. Opt. Express 19, 870.

Galetti, D. and A. F. R. de Toledo Piza (1988): An extended Weyl-Wigner transfor-
mation for special finite spaces. Physica A 149, 267.

Galland, C., N. Sangouard, N. Piro, N. Gisin, and T. J. Kippenberg (2014): Heralded
Single-Phonon Preparation, Storage, and Readout in Cavity Optomechanics. Phys.
Rev. Lett. 112, 143602.

Galve, F., G. Luca Giorgi, and R. Zambrini (2017): Quantum Correlations and
Synchronization Measures. In: Fanchini, F. F., D. d. O. Soares Pinto, and
G. Adesso (editors), Lectures on General Quantum Correlations and their Appli-
cations (Springer International Publishing, Cham), pages 393–420.

García-Pérez, G., M. A. C. Rossi, and S. Maniscalco (2020): IBM Q Experience as a
versatile experimental testbed for simulating open quantum systems. npj Quantum
Inf. 6, 1.

https://dx.doi.org/10.1103/PhysRevA.60.2700
https://dx.doi.org/10.1103/PhysRevA.60.2700
https://www.pnas.org/content/110/6/2005
https://www.pnas.org/content/110/6/2005
http://iopscience.iop.org/article/10.1088/0305-4470/13/2/034
http://iopscience.iop.org/article/10.1088/0305-4470/13/2/034
https://dx.doi.org/10.1103/PhysRevA.45.4879
https://dx.doi.org/10.1103/PhysRevA.45.4879
https://www.nature.com/articles/nature08524
https://doi.org/10.1063/1.1927327
https://dx.doi.org/10.1103/PhysRevLett.84.3690
https://dx.doi.org/10.1103/PhysRevLett.84.3690
http://dx.doi.org/10.1103/RevModPhys.29.74
http://dx.doi.org/10.1103/RevModPhys.29.74
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://doi.org/10.1016/j.neunet.2015.03.003
https://doi.org/10.1016/j.neunet.2015.03.003
https://doi.org/10.1007/BF02650179
https://dx.doi.org/10.1364/OE.19.000870
https://dx.doi.org/10.1364/OE.19.000870
https://dx.doi.org/10.1364/OE.19.000870
https://dx.doi.org/10.1016/0378-4371(88)90219-1
https://dx.doi.org/10.1016/0378-4371(88)90219-1
https://dx.doi.org/10.1103/PhysRevLett.112.143602
https://dx.doi.org/10.1103/PhysRevLett.112.143602
https://doi.org/10.1007/978-3-319-53412-1_18
https://doi.org/10.1007/978-3-319-53412-1_18
https://www.nature.com/articles/s41534-019-0235-y
https://www.nature.com/articles/s41534-019-0235-y


170 BIBLIOGRAPHY

Gardiner, C. W. (1995): Handbook of Stochastic Methods for Physics, Chemistry and
the Natural Sciences (Springer Verlag, Berlin Heidelberg).

Gardiner, C. W. and P. Zoller (2000): Quantum Noise (Springer Verlag, Berlin Hei-
delberg).

Genoni, M. G., J. Zhang, J. Millen, P. F. Barker, and A. Serafini (2015): Quantum
cooling and squeezing of a levitating nanosphere via time-continuous measurements.
N. J. Phys. 17, 073019.

Gerry, C. and P. Knight (2005): Introductory Quantum Optics (Cambridge University
Press, Cambridge).

Gibbons, K. S., M. J. Hoffman, and W. K. Wootters (2004): Discrete phase space
based on finite fields. Phys. Rev. A 70, 062101.

Gigan, S., H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C.
Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger (2006): Self-cooling of a
micromirror by radiation pressure. Nature 444, 67.

Gil-Santos, E., M. Labousse, C. Baker, A. Goetschy, W. Hease, C. Gomez,
A. Lemaître, G. Leo, C. Ciuti, and I. Favero (2017): Light-Mediated Cascaded Lock-
ing of Multiple Nano-Optomechanical Oscillators. Phys. Rev. Lett. 118, 063605.

Gogolin, C. and J. Eisert (2016): Equilibration, thermalisation, and the emergence of
statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056001.

Gradshteyn, I. S. and I. M. Ryzhik (1980): Table of Integrals, Series, and Products
(Academic Press, San Diego).

Greiner, M., O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch (2002): Quantum
phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
Nature 415, 39.

Grigoryan, V. L., K. Shen, and K. Xia (2018): Synchronized spin-photon coupling in
a microwave cavity. Phys. Rev. B 98, 024406.

Grover, L. K. (1997): Quantum Mechanics Helps in Searching for a Needle in a
Haystack. Phys. Rev. Lett. 79, 325.

Grudinin, I. S., H. Lee, O. Painter, and K. J. Vahala (2010): Phonon Laser Action in
a Tunable Two-Level System. Phys. Rev. Lett. 104, 083901.

Hang, C., G. Huang, and V. V. Konotop (2013): PT Symmetry with a System of
Three-Level Atoms. Phys. Rev. Lett. 110, 083604.

Hanson, R., L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen
(2007): Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217.

Harada, T., H.-A. Tanaka, M. J. Hankins, and I. Z. Kiss (2010): Optimal Waveform
for the Entrainment of a Weakly Forced Oscillator. Phys. Rev. Lett. 105, 088301.

Hasegawa, Y. and M. Arita (2014): Circadian clocks optimally adapt to sunlight for
reliable synchronization. J. R. Soc. Interface 11, 20131018.

Heikkilä, T. T., F. Massel, J. Tuorila, R. Khan, and M. A. Sillanpää (2014): Enhancing
Optomechanical Coupling via the Josephson Effect. Phys. Rev. Lett. 112, 203603.

http://iopscience.iop.org/article/10.1088/1367-2630/17/7/073019/meta
http://iopscience.iop.org/article/10.1088/1367-2630/17/7/073019/meta
https://dx.doi.org/10.1103/PhysRevA.70.062101
https://dx.doi.org/10.1103/PhysRevA.70.062101
https://www.nature.com/articles/nature05273
https://www.nature.com/articles/nature05273
https://dx.doi.org/10.1103/PhysRevLett.118.063605
https://dx.doi.org/10.1103/PhysRevLett.118.063605
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://www.nature.com/articles/415039a
https://www.nature.com/articles/415039a
https://dx.doi.org/10.1103/PhysRevB.98.024406
https://dx.doi.org/10.1103/PhysRevB.98.024406
https://dx.doi.org/10.1103/PhysRevLett.79.325
https://dx.doi.org/10.1103/PhysRevLett.79.325
https://dx.doi.org/10.1103/PhysRevLett.104.083901
https://dx.doi.org/10.1103/PhysRevLett.104.083901
https://dx.doi.org/10.1103/PhysRevLett.110.083604
https://dx.doi.org/10.1103/PhysRevLett.110.083604
https://dx.doi.org/10.1103/RevModPhys.79.1217
https://dx.doi.org/10.1103/PhysRevLett.105.088301
https://dx.doi.org/10.1103/PhysRevLett.105.088301
https://dx.doi.org/10.1098/rsif.2013.1018
https://dx.doi.org/10.1098/rsif.2013.1018
https://dx.doi.org/10.1103/PhysRevLett.112.203603
https://dx.doi.org/10.1103/PhysRevLett.112.203603


BIBLIOGRAPHY 171

Heinrich, G., M. Ludwig, J. Qian, B. Kubala, and F. Marquardt (2011): Collective
Dynamics in Optomechanical Arrays. Phys. Rev. Lett. 107, 043603.

Heiss, W. (1999): Phases of wave functions and level repulsion. Eur. Phys. J. D 7, 1.

Hofheinz, M., H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D.
O’Connell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland (2009): Syn-
thesizing arbitrary quantum states in a superconducting resonator. Nature 459,
546.

Holmes, C. A., C. P. Meaney, and G. J. Milburn (2012): Synchronization of many
nanomechanical resonators coupled via a common cavity field. Phys. Rev. E 85,
066203.

Holonyak, N. and S. F. Bevacqua (1962): Coherent (visible) light emission from
Ga(As1−xPx) junctions. Appl. Phys. Lett. 1, 82.

Holstein, T. and H. Primakoff (1940): Field Dependence of the Intrinsic Domain
Magnetization of a Ferromagnet. Phys. Rev. 58, 1098.

Home, J. P., D. Hanneke, J. D. Jost, D. Leibfried, and D. J. Wineland (2011): Normal
modes of trapped ions in the presence of anharmonic trap potentials. N. J. Phys.
13, 073026.

Hong, S., R. Riedinger, I. Marinković, A. Wallucks, S. G. Hofer, R. A. Norte, M. As-
pelmeyer, and S. Gröblacher (2017): Hanbury Brown and Twiss interferometry of
single phonons from an optomechanical resonator. Science 258, 203.

Hopkins, A., K. Jacobs, S. Habib, and K. Schwab (2003): Feedback cooling of a
nanomechanical resonator. Phys. Rev. B 68, 235328.

Hossein-Zadeh, M. and K. J. Vahala (2008): Observation of injection locking in an
optomechanical rf oscillator. Appl. Phys. Lett. 93, 191115.

Huang, K. and M. Hossein-Zadeh (2018): Injection locking of optomechanical oscilla-
tors via acoustic waves. Opt. Express 26, 8275.

Hush, M. R., W. Li, S. Genway, I. Lesanovsky, and A. D. Armour (2015): Spin
correlations as a probe of quantum synchronization in trapped-ion phonon lasers.
Phys. Rev. A 91, 061401(R).

Huygens, C. (1673): Horologium oscillatorium, sive De motu pendulorum ad horologia
aptato demonstrationes geometricae (F. Muguet, Paris).

IBM (2019a): IBM Q System, https://quantum-computing.ibm.com/.

IBM (2019b): IBM Q System User Guide, https://quantum-computing.ibm.com/
support/guides/user-guide.

Iwasawa, K., K. Makino, H. Yonezawa, M. Tsang, A. Davidovic, E. Huntington, and
A. Furusawa (2013): Quantum-Limited Mirror-Motion Estimation. Phys. Rev. Lett.
111, 163602.

Jacobs, K. and A. J. Landahl (2009): Engineering Giant Nonlinearities in Quantum
Nanosystems. Phys. Rev. Lett. 103, 067201.

https://dx.doi.org/10.1103/PhysRevLett.107.043603
https://dx.doi.org/10.1103/PhysRevLett.107.043603
https://doi.org/10.1007/s100530050339
https://doi.org/10.1038/nature08005
https://doi.org/10.1038/nature08005
https://dx.doi.org/10.1103/PhysRevE.85.066203
https://dx.doi.org/10.1103/PhysRevE.85.066203
https://doi.org/10.1063/1.1753706
https://doi.org/10.1063/1.1753706
https://dx.doi.org/10.1103/PhysRev.58.1098
https://dx.doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1088/1367-2630/13/7/073026
https://doi.org/10.1088/1367-2630/13/7/073026
http://science.sciencemag.org/content/358/6360/203
http://science.sciencemag.org/content/358/6360/203
https://dx.doi.org/10.1103/PhysRevB.68.235328
https://dx.doi.org/10.1103/PhysRevB.68.235328
https://aip.scitation.org/doi/10.1063/1.3028024
https://aip.scitation.org/doi/10.1063/1.3028024
https://dx.doi.org/10.1364/OE.26.008275
https://dx.doi.org/10.1364/OE.26.008275
http://dx.doi.org/10.1103/PhysRevA.91.061401
http://dx.doi.org/10.1103/PhysRevA.91.061401
https://gutenberg.beic.it/webclient/DeliveryManager?pid=869780
https://gutenberg.beic.it/webclient/DeliveryManager?pid=869780
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/support/guides/user-guide
https://quantum-computing.ibm.com/support/guides/user-guide
https://quantum-computing.ibm.com/support/guides/user-guide
http://dx.doi.org/10.1103/PhysRevLett.111.163602
https://dx.doi.org/10.1103/PhysRevLett.103.067201
https://dx.doi.org/10.1103/PhysRevLett.103.067201


172 BIBLIOGRAPHY

Jaksch, D., C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller (1998): Cold Bosonic
Atoms in Optical Lattices. Phys. Rev. Lett. 81, 3108.

Jewett, M. E. and R. E. Kronauer (1998): Refinement of Limit Cycle Oscillator Model
of the Effects of Light on the Human Circadian Pacemaker. J. Theor. Biol. 192,
455.

Jiang, X., Q. Lin, J. Rosenberg, K. Vahala, and O. Painter (2009): High-Q double-disk
microcavities for cavity optomechanics. Opt. Express 17, 20911.

Jing, H., S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori (2014): PT-
Symmetric Phonon Laser. Phys. Rev. Lett. 113, 053604.

Johansson, J. R., P. D. Nation, and F. Nori (2012): QuTiP: An open-source Python
framework for the dynamics of open quantum systems. Comput. Phys. Commun.
183, 1760.

Kandala, A., A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and
J. M. Gambetta (2017): Hardware-efficient variational quantum eigensolver for
small molecules and quantum magnets. Nature 549, 242.

Kelly, J. (2018): A Preview of Bristlecone, Google’s New Quantum Processor. Google
AI Blog, March 5.

Khaneja, N., R. Brockett, and S. J. Glaser (2001): Time optimal control in spin
systems. Phys. Rev. A 63, 032308.

Kheruntsyan, K. V. (1999): Wigner function for a driven anharmonic oscillator. J.
Opt. B-Quantum S. O. 1, 225.

Kheruntsyan, K. V., D. S. Krähmer, G. Y. Kryuchkyan, and K. G. Petrossian (1996):
Wigner function for a generalized model of a parametric oscillator: phase-space
tristability, competition and nonclassical effects. Opt. Commun. 139, 157.

Khurgin, J. B., M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich (2012a):
Optically pumped coherent mechanical oscillators: the laser rate equation theory
and experimental verification. N. J. Phys. 14, 105022.

Khurgin, J. B., M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich (2012b):
Laser-Rate-Equation Description of Optomechanical Oscillators. Phys. Rev. Lett.
108, 223904.

Kliesch, M., T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert (2011): Dissipative
Quantum Church-Turing Theorem. Phys. Rev. Lett. 107, 120501.

Kloeden, P. E. and E. Platen (1995): Numerical solution of stochastic differential
equations (Springer Verlag, Berlin Heidelberg), 2nd corrected edition.

Ko, T.-W. and G. B. Ermentrout (2008): Partially locked states in coupled oscillators
due to inhomogeneous coupling. Phys. Rev. E 78, 016203.

Kono, S., K. Koshino, Y. Tabuchi, A. Noguchi, and Y. Nakamura (2018): Quantum
non-demolition detection of an itinerant microwave photon. Nat. Phys. 14, 546.

Koppenhöfer, M., C. Bruder, and N. Lörch (2018): Unraveling nonclassicality in the
optomechanical instability. Phys. Rev. A 97, 063812.

http://dx.doi.org/10.1103/PhysRevLett.81.3108
http://dx.doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1006/jtbi.1998.0667
https://doi.org/10.1006/jtbi.1998.0667
https://dx.doi.org/10.1364/OE.17.020911
https://dx.doi.org/10.1364/OE.17.020911
https://dx.doi.org/10.1103/PhysRevLett.113.053604
https://dx.doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://www.nature.com/articles/nature23879
https://www.nature.com/articles/nature23879
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://dx.doi.org/10.1103/PhysRevA.63.032308
https://dx.doi.org/10.1103/PhysRevA.63.032308
http://iopscience.iop.org/article/10.1088/1464-4266/1/2/005/meta
https://people.smp.uq.edu.au/KarenKheruntsyan/publications.html
https://people.smp.uq.edu.au/KarenKheruntsyan/publications.html
https://doi.org/10.1088/1367-2630/14/10/105022
https://doi.org/10.1088/1367-2630/14/10/105022
https://dx.doi.org/10.1103/PhysRevLett.108.223904
https://dx.doi.org/10.1103/PhysRevLett.107.120501
https://dx.doi.org/10.1103/PhysRevLett.107.120501
https://dx.doi.org/10.1103/PhysRevE.78.016203
https://dx.doi.org/10.1103/PhysRevE.78.016203
https://www.nature.com/articles/s41567-018-0066-3
https://www.nature.com/articles/s41567-018-0066-3
https://dx.doi.org/10.1103/PhysRevA.97.063812
https://dx.doi.org/10.1103/PhysRevA.97.063812


BIBLIOGRAPHY 173

Koppenhöfer, M., C. Bruder, and N. Lörch (2020a): Heralded dissipative preparation
of nonclassical states in a Kerr oscillator. Phys. Rev. Research 2, 013071.

Koppenhöfer, M., C. Bruder, and A. Roulet (2020b): Quantum synchronization on
the IBM Q system. Phys. Rev. Research 2, 023026.

Koppenhöfer, M. and A. Roulet (2019): Optimal synchronization deep in the quantum
regime: Resource and fundamental limit. Phys. Rev. A 99, 043804.

Koppens, F. H. L., C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier,
L. P. Kouwenhoven, and L. M. K. Vandersypen (2006): Driven coherent oscillations
of a single electron spin in a quantum dot. Nature 442, 766.

Koseska, A., E. Volkov, and J. Kurths (2013): Oscillation quenching mechanisms:
Amplitude vs. oscillation death. Phys. Rep. 531, 173.

Kraus, B. and J. I. Cirac (2001): Optimal creation of entanglement using a two-qubit
gate. Phys. Rev. A 63, 062309.

Krauter, H., C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac,
and E. S. Polzik (2011): Entanglement Generated by Dissipation and Steady State
Entanglement of Two Macroscopic Objects. Phys. Rev. Lett. 107, 080503.

Kuramoto, Y. (1984): Chemical Oscillations, Waves and Turbulence (Springer Verlag,
Berlin Heidelberg).

Kuramoto, Y. and D. Battogtokh (2002): Coexistence of Coherence and Incoherence
in Nonlocally Coupled Phase Oscillators. Nonl. Phen. Compl. Syst. 5, 380.

Lance, A. M., H. Jeong, N. B. Grosse, T. Symul, T. C. Ralph, and P. K. Lam (2006):
Quantum-state engineering with continuous-variable postselection. Phys. Rev. A 73,
041801.

Langbein, W. (2018): No exceptional precision of exceptional-point sensors. Phys.
Rev. A 98, 023805.

Lau, H.-K. and A. A. Clerk (2018): Fundamental limits and non-reciprocal approaches
in non-Hermitian quantum sensing. Nat. Commun. 9, 4320.

Law, C. K. (1995): Interaction between a moving mirror and radiation pressure: A
Hamiltonian formulation. Phys. Rev. A 51, 2537.

Lee, T. E., C.-K. Chan, and S. Wang (2014): Entanglement tongue and quantum
synchronization of disordered oscillators. Phys. Rev. E 89, 022913.

Lee, T. E. and M. C. Cross (2013): Quantum-classical transition of correlations of
two coupled cavities. Phys. Rev. A 88, 013834.

Lee, T. E. and H. R. Sadeghpour (2013): Quantum Synchronization of Quantum van
der Pol Oscillators with Trapped Ions. Phys. Rev. Lett. 111, 234101.

Leek, P. J., M. Baur, J. M. Fink, R. Bianchetti, L. Steffen, S. Filipp, and A. Wallraff
(2010): Cavity Quantum Electrodynamics with Separate Photon Storage and Qubit
Readout Modes. Phys. Rev. Lett. 104, 100504.

Leek, P. J., S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Göppl,
L. Steffen, and A. Wallraff (2009): Using sideband transitions for two-qubit opera-
tions in superconducting circuits. Phys. Rev. B 79, 180511.

https://dx.doi.org/10.1103/PhysRevResearch.2.013071
https://dx.doi.org/10.1103/PhysRevResearch.2.013071
https://dx.doi.org/10.1103/PhysRevResearch.2.023026
https://dx.doi.org/10.1103/PhysRevResearch.2.023026
https://dx.doi.org/10.1103/PhysRevA.99.043804
https://dx.doi.org/10.1103/PhysRevA.99.043804
https://www.nature.com/articles/nature05065
https://www.nature.com/articles/nature05065
https://doi.org/10.1016/j.physrep.2013.06.001
https://doi.org/10.1016/j.physrep.2013.06.001
https://dx.doi.org/10.1103/PhysRevA.63.062309
https://dx.doi.org/10.1103/PhysRevA.63.062309
https://dx.doi.org/10.1103/PhysRevLett.107.080503
https://dx.doi.org/10.1103/PhysRevLett.107.080503
http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html
http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html
https://dx.doi.org/10.1103/PhysRevA.73.041801
https://dx.doi.org/10.1103/PhysRevA.98.023805
https://www.nature.com/articles/s41467-018-06477-7/
https://www.nature.com/articles/s41467-018-06477-7/
https://dx.doi.org/10.1103/PhysRevA.51.2537
https://dx.doi.org/10.1103/PhysRevA.51.2537
https://dx.doi.org/10.1103/PhysRevE.89.022913
https://dx.doi.org/10.1103/PhysRevE.89.022913
https://dx.doi.org/10.1103/PhysRevA.88.013834
https://dx.doi.org/10.1103/PhysRevA.88.013834
https://dx.doi.org/10.1103/PhysRevLett.111.234101
https://dx.doi.org/10.1103/PhysRevLett.111.234101
https://dx.doi.org/10.1103/PhysRevLett.104.100504
https://dx.doi.org/10.1103/PhysRevLett.104.100504
https://dx.doi.org/10.1103/PhysRevB.79.180511
https://dx.doi.org/10.1103/PhysRevB.79.180511


174 BIBLIOGRAPHY

Li, A. C. Y., F. Petruccione, and J. Koch (2014): Perturbative approach to Markovian
open quantum systems. Sci. Rep. 4, 4887.

Linden, N., S. Popescu, A. J. Short, and A. Winter (2009): Quantum mechanical
evolution towards thermal equilibrium. Phys. Rev. E 79, 061103.

Lloyd, S. (1996): Universal Quantum Simulators. Science 273, 1073.

Lloyd, S. and L. Viola (2001): Engineering quantum dynamics. Phys. Rev. A 65,
010101.

Lörch, N., E. Amitai, A. Nunnenkamp, and C. Bruder (2016): Genuine Quantum
Signatures in Synchronization of Anharmonic Self-Oscillators. Phys. Rev. Lett.
117, 073601.

Lörch, N., S. E. Nigg, A. Nunnenkamp, R. P. Tiwari, and C. Bruder (2017): Quan-
tum Synchronization Blockade: Energy Quantization Hinders Synchronization of
Identical Oscillators. Phys. Rev. Lett. 118, 243602.

Lörch, N., J. Qian, A. Clerk, F. Marquardt, and K. Hammerer (2014): Laser Theory
for Optomechanics: Limit Cycles in the Quantum Regime. Phys. Rev. X 4, 011015.

Lorenz, E. N. (1963): Deterministic Nonperiodic Flow. J. Atmos. Sci. 20, 130.

Lougovski, P., E. Solano, Z. M. Zhang, H. Walther, H. Mack, and W. P. Schleich
(2003): Fresnel Representation of the Wigner Function: An Operational Approach.
Phys. Rev. Lett. 91, 010401.

Ludwig, M. and F. Marquardt (2013): Quantum Many-Body Dynamics in Optome-
chanical Arrays. Phys. Rev. Lett. 111, 073603.

Lund, A. P., H. Jeong, T. C. Ralph, and M. S. Kim (2004): Conditional production
of superpositions of coherent states with inefficient photon detection. Phys. Rev. A
70, 020101.

Lynch, R. (1995): The quantum phase problem: a critical review. Phys. Rep. 256,
367.

Ma, R., A. Schliesser, P. Del’Haye, A. Dabirian, G. Anetsberger, and T. J. Kip-
penberg (2007): Radiation-pressure-driven vibrational modes in ultrahigh-Q silica
microspheres. Opt. Lett. 32, 2200.

Machado, J. D. P. and Y. M. Blanter (2016): Quantum nonlinear dynamics of op-
tomechanical systems in the strong-coupling regime. Phys. Rev. A 94, 063835.

Maiman, T. H. (1960): Stimulated optical radiation in ruby. Nature 187, 493.

Makhlin, Y., G. Schön, and A. Shnirman (2001): Quantum-state engineering with
Josephson-junction devices. Rev. Mod. Phys. 73, 357.

Makris, K. G., R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani (2008):
Beam Dynamics in PT Symmetric Optical Lattices. Phys. Rev. Lett. 100, 103904.

Mamaev, M., L. C. Govia, and A. A. Clerk (2018): Dissipative stabilization of entan-
gled cat states using a driven Bose-Hubbard dimer. Quantum 2, 58.

Mancini, S., D. Vitali, and P. Tombesi (1998): Optomechanical Cooling of a Macro-
scopic Oscillator by Homodyne Feedback. Phys. Rev. Lett. 80, 688.

https://doi.org/10.1038/srep04887
https://doi.org/10.1038/srep04887
https://dx.doi.org/10.1103/PhysRevE.79.061103
https://dx.doi.org/10.1103/PhysRevE.79.061103
https://science.sciencemag.org/content/273/5278/1073
https://dx.doi.org/10.1103/PhysRevA.65.010101
https://dx.doi.org/10.1103/PhysRevLett.117.073601
https://dx.doi.org/10.1103/PhysRevLett.117.073601
https://dx.doi.org/10.1103/PhysRevLett.118.243602
https://dx.doi.org/10.1103/PhysRevLett.118.243602
https://dx.doi.org/10.1103/PhysRevLett.118.243602
http://dx.doi.org/10.1103/PhysRevX.4.011015
http://dx.doi.org/10.1103/PhysRevX.4.011015
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://dx.doi.org/10.1103/PhysRevLett.91.010401
https://dx.doi.org/10.1103/PhysRevLett.111.073603
https://dx.doi.org/10.1103/PhysRevLett.111.073603
https://dx.doi.org/10.1103/PhysRevA.70.020101
https://dx.doi.org/10.1103/PhysRevA.70.020101
https://doi.org/10.1016/0370-1573(94)00095-K
https://dx.doi.org/10.1364/OL.32.002200
https://dx.doi.org/10.1364/OL.32.002200
https://dx.doi.org/10.1103/PhysRevA.94.063835
https://dx.doi.org/10.1103/PhysRevA.94.063835
http://dx.doi.org/10.1038/187493a0
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
https://dx.doi.org/10.1103/PhysRevLett.100.103904
https://quantum-journal.org/papers/q-2018-03-27-58/
https://quantum-journal.org/papers/q-2018-03-27-58/
https://dx.doi.org/10.1103/PhysRevLett.80.688
https://dx.doi.org/10.1103/PhysRevLett.80.688


BIBLIOGRAPHY 175

Mandel, L. (1986): Non-Classical States of the Electromagnetic Field. Phys. Scripta
T12, 34.

Mari, A. and J. Eisert (2012): Positive Wigner Functions Render Classical Simulation
of Quantum Computation Efficient. Phys. Rev. Lett. 109, 230503.

Mari, A., A. Farace, N. Didier, V. Giovannetti, and R. Fazio (2013): Measures of
Quantum Synchronization in Continuous Variable Systems. Phys. Rev. Lett. 111,
103605.

Marquardt, F., J. P. Chen, A. A. Clerk, and S. M. Girvin (2007): Quantum Theory
of Cavity-Assisted Sideband Cooling of Mechanical Motion. Phys. Rev. Lett. 99,
093902.

Marquardt, F., J. G. E. Harris, and S. M. Girvin (2006): Dynamical Multistability
Induced by Radiation Pressure in High-Finesse Micromechanical Optical Cavities.
Phys. Rev. Lett. 96, 103901.

Matheny, M. H., M. Grau, L. G. Villanueva, R. B. Karabalin, M. C. Cross, and
M. L. Roukes (2014): Phase Synchronization of Two Anharmonic Nanomechanical
Oscillators. Phys. Rev. Lett. 112, 014101.

McClure, D. and J. Gambetta (2019): Quantum computation center opens. IBM
Research Blog, September 18.

Meaney, C. H., H. Nha, T. Duty, and G. J. Milburn (2014): Quantum and classical
nonlinear dynamics in a microwave cavity. EPJ Quantum Technol. 1, 7.

Metelmann, A. and A. A. Clerk (2015): Nonreciprocal Photon Transmission and Am-
plification via Reservoir Engineering. Phys. Rev. X 5, 021025.

Michael, M. H., M. Silveri, R. T. Brierley, V. V. Albert, J. Salmilehto, L. Jiang, and
S. M. Girvin (2016): New Class of Quantum Error-Correcting Codes for a Bosonic
Mode. Phys. Rev. X 6, 031006.

Minganti, F., N. Bartolo, J. Lolli, W. Casteels, and C. Ciuti (2016): Exact results for
Schrödinger cats in driven-dissipative systems and their feedback control. Sci. Rep.
6, 26987.

Modi, K., A. Brodutch, H. Cable, T. Paterek, and V. Vedral (2012): The classical-
quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys.
84, 1655.

Moiseyev, N. (2011): Non-Hermitian Quantum Mechanics (Cambridge University
Press, Cambridge).

Munro, W. J., K. Nemoto, R. G. Beausoleil, and T. P. Spiller (2005): High-efficiency
quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71,
033819.

Nakamura, Y., Y. A. Pashkin, and J. S. Tsai (1999): Coherent control of macroscopic
quantum states in a single-Cooper-pair box. Nature 398, 786.

Nation, P. D. (2013): Nonclassical mechanical states in an optomechanical micromaser
analog. Phys. Rev. A 88, 053828.

https://doi.org/10.1088/0031-8949/1986/t12/005
https://dx.doi.org/10.1103/PhysRevLett.109.230503
https://dx.doi.org/10.1103/PhysRevLett.109.230503
https://dx.doi.org/10.1103/PhysRevLett.111.103605
https://dx.doi.org/10.1103/PhysRevLett.111.103605
https://dx.doi.org/10.1103/PhysRevLett.99.093902
https://dx.doi.org/10.1103/PhysRevLett.99.093902
http://dx.doi.org/10.1103/PhysRevLett.96.103901
http://dx.doi.org/10.1103/PhysRevLett.96.103901
https://dx.doi.org/10.1103/PhysRevLett.112.014101
https://dx.doi.org/10.1103/PhysRevLett.112.014101
https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/
https://doi.org/10.1140/epjqt7
https://doi.org/10.1140/epjqt7
https://dx.doi.org/10.1103/PhysRevX.5.021025
https://dx.doi.org/10.1103/PhysRevX.5.021025
https://dx.doi.org/10.1103/PhysRevX.6.031006
https://dx.doi.org/10.1103/PhysRevX.6.031006
https://www.nature.com/articles/srep26987
https://www.nature.com/articles/srep26987
https://dx.doi.org/10.1103/RevModPhys.84.1655
https://dx.doi.org/10.1103/RevModPhys.84.1655
https://dx.doi.org/10.1103/PhysRevA.71.033819
https://dx.doi.org/10.1103/PhysRevA.71.033819
https://www.nature.com/articles/19718
https://www.nature.com/articles/19718
https://dx.doi.org/10.1103/PhysRevA.88.053828
https://dx.doi.org/10.1103/PhysRevA.88.053828


176 BIBLIOGRAPHY

Nayfeh, A. H. and D. T. Mook (1995): Nonlinear Oscillations (Wiley-VCH Verlag,
Weinheim).

Néda, Z., E. Ravasz, Y. Brechet, T. Vicsek, and A. L. Barabási (2000): The sound of
many hands clapping. Nature 403, 849.

Neeley, M., M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connell,
D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, and J. M. Martinis
(2009): Emulation of a Quantum Spin with a Superconducting Phase Qudit. Science
325, 722.

Nha, H. and H. J. Carmichael (2004): Entanglement within the Quantum Trajectory
Description of Open Quantum Systems. Phys. Rev. Lett. 93, 120408.

Nielsen, M. A. and I. L. Chuang (2011): Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition (Cambridge University Press, Cambridge).

Nigg, S. E. (2018): Observing quantum synchronization blockade in circuit quantum
electrodynamics. Phys. Rev. A 97, 013811.

O’Connell, A. D., M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero,
M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N.
Cleland (2010): Quantum ground state and single-phonon control of a mechanical
resonator. Nature 464, 697.

Opatrný, T., V. Bužek, J. Bajer, and G. Drobný (1995): Propensities in discrete phase
spaces: Q function of a state in a finite-dimensional Hilbert space. Phys. Rev. A
52, 2419.

Ourjoumtsev, A., R. Tualle-Brouri, J. Laurat, and P. Grangier (2006): Generating
Optical Schrödinger Kittens for Quantum Information Processing. Science 312, 83.

Palomaki, T. A., J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert
(2013): Coherent state transfer between itinerant microwave fields and a mechanical
oscillator. Nature 495, 210.

Peano, V., C. Brendel, M. Schmidt, and F. Marquardt (2015): Topological Phases of
Sound and Light. Phys. Rev. X 5, 031011.

Pecora, L. M. and T. L. Carroll (1990): Synchronization in chaotic systems. Phys.
Rev. Lett. 64, 821.

Pednault, E., J. A. Gunnels, G. Nannicini, L. Horesh, and R. Wisnieff (2019): Leverag-
ing Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits. arXiv preprint
1910.09534.

Peruzzo, A., J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-
Guzik, and J. L. O’Brien (2014): A variational eigenvalue solver on a photonic
quantum processor. Nat. Commun. 5, 4213.

Pezzè, L., A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein (2018): Quantum
metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005.

Pikovsky, A. (2015): Maximizing Coherence of Oscillations by External Locking. Phys.
Rev. Lett. 115, 070602.

https://www.nature.com/articles/35002660
https://www.nature.com/articles/35002660
http://science.sciencemag.org/content/325/5941/722
https://dx.doi.org/10.1103/PhysRevLett.93.120408
https://dx.doi.org/10.1103/PhysRevLett.93.120408
https://dx.doi.org/10.1103/PhysRevA.97.013811
https://dx.doi.org/10.1103/PhysRevA.97.013811
https://www.nature.com/articles/nature08967
https://www.nature.com/articles/nature08967
https://dx.doi.org/10.1103/PhysRevA.52.2419
https://dx.doi.org/10.1103/PhysRevA.52.2419
https://science.sciencemag.org/content/312/5770/83
https://science.sciencemag.org/content/312/5770/83
http://www.nature.com/articles/nature11915
http://www.nature.com/articles/nature11915
https://dx.doi.org/10.1103/PhysRevX.5.031011
https://dx.doi.org/10.1103/PhysRevX.5.031011
https://dx.doi.org/10.1103/PhysRevLett.64.821
https://arxiv.org/abs/1910.09534
https://arxiv.org/abs/1910.09534
https://arxiv.org/abs/1910.09534
https://www.nature.com/articles/ncomms5213
https://www.nature.com/articles/ncomms5213
https://dx.doi.org/10.1103/RevModPhys.90.035005
https://dx.doi.org/10.1103/RevModPhys.90.035005
https://dx.doi.org/10.1103/PhysRevLett.115.070602


BIBLIOGRAPHY 177

Pikovsky, A., M. Rosenblum, and J. Kurths (2003): Synchronization. A universal
concept in nonlinear sciences (Cambridge University Press, Cambridge).

Plenio, M. B., S. F. Huelga, A. Beige, and P. L. Knight (1999): Cavity-loss-induced
generation of entangled atoms. Phys. Rev. A 59, 2468.

Polkovnikov, A. (2010): Phase space representation of quantum dynamics. Ann. Phys.-
New York 325, 1790.

Poyatos, J. F., J. I. Cirac, and P. Zoller (1996): Quantum Reservoir Engineering with
Laser Cooled Trapped Ions. Phys. Rev. Lett. 77, 4728.

Preskill, J. (2018): Quantum Computing in the NISQ era and beyond. Quantum 2,
79.

Purdy, T. P., R. W. Peterson, and C. A. Regal (2013): Observation of Radiation
Pressure Shot Noise on a Macroscopic Object. Science 339, 801.

Qian, J., A. A. Clerk, K. Hammerer, and F. Marquardt (2012): Quantum Signatures
of the Optomechanical Instability. Phys. Rev. Lett. 109, 253601.

Radcliffe, J. M. (1971): Some properties of coherent spin states. J. Phys. A-Gen. 4,
313.

Rahimi-Keshari, S., T. C. Ralph, and C. M. Caves (2016): Sufficient Conditions for
Efficient Classical Simulation of Quantum Optics. Phys. Rev. X 6, 021039.

Rannacher, R. (2014): Numerische Mathematik 1. Numerik gewöhnlicher Differential-
gleichungen (Heidelberg University Publishing, Heidelberg).

Regal, C. A., J. D. Teufel, and K. W. Lehnert (2008): Measuring nanomechanical
motion with a microwave cavity interferometer. Nat. Phys. 4, 555.

Regensburger, A., C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and
U. Peschel (2012): Parity-time symmetric photonic lattices. Nature 488, 167.

Reiner, J.-M., F. Wilhelm-Mauch, G. Schön, and M. Marthaler (2019): Finding the
ground state of the Hubbard model by variational methods on a quantum computer
with gate errors. Quantum Sci. Technol. 4, 035005.

Rigetti (2019): Rigetti Computing, https://www.rigetti.com/.

Rimberg, A. J., M. P. Blencowe, A. D. Armour, and P. D. Nation (2014): A cavity-
Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-
strong coupling regime. N. J. Phys. 16, 055008.

Rodrigues, D. A. and A. D. Armour (2010): Amplitude Noise Suppression in Cavity-
Driven Oscillations of a Mechanical Resonator. Phys. Rev. Lett. 104, 053601.

Rodrigues, F. A., T. K. D. Peron, P. Ji, and J. Kurths (2016): The Kuramoto model
in complex networks. Phys. Rep. 610, 1.

Rokhsari, H., T. J. Kippenberg, T. Carmon, and K. J. Vahala (2005): Radiation-
pressure-driven micro-mechanical oscillator. Opt. Express 13, 5293.

Rompala, K., R. Rand, and H. Howland (2007): Dynamics of three coupled van der
Pol oscillators with application to circadian rhythms. Commun. Nonlinear Sci. 12,
794.

https://dx.doi.org/10.1103/PhysRevA.59.2468
https://dx.doi.org/10.1103/PhysRevA.59.2468
https://doi.org/10.1016/j.aop.2010.02.006
https://dx.doi.org/10.1103/PhysRevLett.77.4728
https://dx.doi.org/10.1103/PhysRevLett.77.4728
https://doi.org/10.22331/q-2018-08-06-79
http://science.sciencemag.org/content/339/6121/801.full
http://science.sciencemag.org/content/339/6121/801.full
https://dx.doi.org/10.1103/PhysRevLett.109.253601
https://dx.doi.org/10.1103/PhysRevLett.109.253601
http://iopscience.iop.org/article/10.1088/0305-4470/4/3/009/meta
https://dx.doi.org/10.1103/PhysRevX.6.021039
https://dx.doi.org/10.1103/PhysRevX.6.021039
https://www.nature.com/articles/nphys974
https://www.nature.com/articles/nphys974
https://www.nature.com/articles/nature11298
https://doi.org/10.1088/2058-9565/ab1e85
https://doi.org/10.1088/2058-9565/ab1e85
https://doi.org/10.1088/2058-9565/ab1e85
https://www.rigetti.com/
https://www.rigetti.com/
https://dx.doi.org/10.1088/1367-2630/16/5/055008
https://dx.doi.org/10.1088/1367-2630/16/5/055008
https://dx.doi.org/10.1088/1367-2630/16/5/055008
https://dx.doi.org/10.1103/PhysRevLett.104.053601
https://dx.doi.org/10.1103/PhysRevLett.104.053601
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-14-5293
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-14-5293
https://doi.org/10.1016/j.cnsns.2005.08.002
https://doi.org/10.1016/j.cnsns.2005.08.002


178 BIBLIOGRAPHY

Roulet, A. and C. Bruder (2018a): Synchronizing the Smallest Possible System. Phys.
Rev. Lett. 121, 053601.

Roulet, A. and C. Bruder (2018b): Quantum Synchronization and Entanglement Gen-
eration. Phys. Rev. Lett. 121, 063601.

Rowat, P. F. and A. I. Selverston (1993): Modeling the gastric mill central pattern
generator of the lobster with a relaxation-oscillator network. J. Neurophysiol. 70,
1030.

Roy, R. and K. S. Thornburg (1994): Experimental synchronization of chaotic lasers.
Phys. Rev. Lett. 72, 2009.

Schreppler, S., N. Spethmann, N. Brahms, T. Botter, M. Barrios, and D. M. Stamper-
Kurn (2014): Optically measuring force near the standard quantum limit. Science
344, 1486.

Seitner, M. J., M. Abdi, A. Ridolfo, M. J. Hartmann, and E. M. Weig (2017): Para-
metric Oscillation, Frequency Mixing, and Injection Locking of Strongly Coupled
Nanomechanical Resonator Modes. Phys. Rev. Lett. 118, 254301.

Senko, C., P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker, and C. Monroe (2015):
Realization of a Quantum Integer-Spin Chain with Controllable Interactions. Phys.
Rev. X 5, 021026.

Shahandeh, F. and M. Ringbauer (2019): Optomechanical state reconstruction and
nonclassicality verification beyond the resolved-sideband regime. Quantum 3, 125.

Shalibo, Y., R. Resh, O. Fogel, D. Shwa, R. Bialczak, J. M. Martinis, and N. Katz
(2013): Direct Wigner Tomography of a Superconducting Anharmonic Oscillator.
Phys. Rev. Lett. 110, 100404.

Shlomi, K., D. Yuvaraj, I. Baskin, O. Suchoi, R. Winik, and E. Buks (2015): Syn-
chronization in an optomechanical cavity. Phys. Rev. E 91, 032910.

Shor, P. W. (1997): Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 1484.

Smith, A., B. Jobst, A. G. Green, and F. Pollmann (2019a): Crossing a topological
phase transition with a quantum computer. arXiv preprint 1910.05351.

Smith, A., M. S. Kim, F. Pollmann, and J. Knolle (2019b): Simulating quantum
many-body dynamics on a current digital quantum computer. npj Quantum Inf. 5,
106.

Smolin, J. A., J. M. Gambetta, and G. Smith (2012): Efficient Method for Com-
puting the Maximum-Likelihood Quantum State from Measurements with Additive
Gaussian Noise. Phys. Rev. Lett. 108, 070502.

Sonar, S., M. Hajdušek, M. Mukherjee, R. Fazio, V. Vedral, S. Vinjanampathy, and
L.-C. Kwek (2018): Squeezing Enhances Quantum Synchronization. Phys. Rev.
Lett. 120, 163601.

Sörgel, L. and K. Hornberger (2015): Unraveling quantum Brownian motion: Pointer
states and their classical trajectories. Phys. Rev. A 92, 062112.

https://dx.doi.org/10.1103/PhysRevLett.121.053601
https://dx.doi.org/10.1103/PhysRevLett.121.063601
https://dx.doi.org/10.1103/PhysRevLett.121.063601
https://doi.org/10.1152/jn.1993.70.3.1030
https://doi.org/10.1152/jn.1993.70.3.1030
https://dx.doi.org/10.1103/PhysRevLett.72.2009
http://science.sciencemag.org/content/344/6191/1486.full
https://dx.doi.org/10.1103/PhysRevLett.118.254301
https://dx.doi.org/10.1103/PhysRevLett.118.254301
https://dx.doi.org/10.1103/PhysRevLett.118.254301
https://dx.doi.org/10.1103/PhysRevX.5.021026
https://doi.org/10.22331/q-2019-02-25-125
https://doi.org/10.22331/q-2019-02-25-125
https://dx.doi.org/10.1103/PhysRevLett.110.100404
https://dx.doi.org/10.1103/PhysRevE.91.032910
https://dx.doi.org/10.1103/PhysRevE.91.032910
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://arxiv.org/abs/1910.05351
https://arxiv.org/abs/1910.05351
https://arxiv.org/abs/1910.05351
https://www.nature.com/articles/s41534-019-0217-0
https://www.nature.com/articles/s41534-019-0217-0
https://dx.doi.org/10.1103/PhysRevLett.108.070502
https://dx.doi.org/10.1103/PhysRevLett.108.070502
https://dx.doi.org/10.1103/PhysRevLett.108.070502
https://dx.doi.org/10.1103/PhysRevLett.120.163601
https://dx.doi.org/10.1103/PhysRevA.92.062112
https://dx.doi.org/10.1103/PhysRevA.92.062112


BIBLIOGRAPHY 179

Soykal, O. O. and M. E. Flatté (2010): Strong Field Interactions between a Nanomag-
net and a Photonic Cavity. Phys. Rev. Lett. 104, 077202.

Stahlke, D. (2014): Quantum interference as a resource for quantum speedup. Phys.
Rev. A 90, 022302.

Stark, A., N. Aharon, A. Huck, H. A. R. El-Ella, A. Retzker, F. Jelezko, and U. L.
Andersen (2018): Clock transition by continuous dynamical decoupling of a three-
level system. Sci. Rep. 8, 14807.

Strogatz, S. H. (2000): From Kuramoto to Crawford: exploring the onset of synchro-
nization in populations of coupled oscillators. Physica D 143, 1.

Strogatz, S. H. (2015): Nonlinear Dynamics and Chaos. With Applications to Physics,
Biology, Chemistry, and Engineering (Westview Press, Cambridge), 2nd edition.

Susskind, L. and J. Glogower (1964): Quantum mechanical phase and time operator.
Physics Physique Fizika 1, 49.

Suzuki, M. (1976): Generalized Trotter’s formula and systematic approximants of ex-
ponential operators and inner derivations with applications to many-body problems.
Commun. Math. Phys. 51, 183.

Takeda, S., T. Mizuta, M. Fuwa, J.-i. Yoshikawa, H. Yonezawa, and A. Furusawa
(2013): Generation and eight-port homodyne characterization of time-bin qubits for
continuous-variable quantum information processing. Phys. Rev. A 87, 043803.

Takeuchi, S., J. Kim, Y. Yamamoto, and H. H. Hogue (1999): Development of a
high-quantum-efficiency single-photon counting system. Appl. Phys. Lett. 74, 1063.

Tanaka, H.-A. (2014): Optimal entrainment with smooth, pulse, and square signals in
weakly forced nonlinear oscillators. Physica D 288, 1.

Teufel, J. D., T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert
(2009): Nanomechanical motion measured with an imprecision below that at the
standard quantum limit. Nat. Nanotechnol. 4, 820.

Teufel, J. D., T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois,
J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds (2011): Sideband cooling of
micromechanical motion to the quantum ground state. Nature 475, 359.

Thompson, J. D., B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and
J. G. E. Harris (2008): Strong dispersive coupling of a high-finesse cavity to a
micromechanical membrane. Nature 452, 72.

Toth, L., N. Bernier, A. Feofanov, and T. Kippenberg (2018): A maser based on
dynamical backaction on microwave light. Physics Letters A 382, 2233.

Trotter, H. F. (1959): On the product of semi-groups of operators. Proc. Amer. Math.
Soc. 10, 545.

van der Pol, B. (1926): On relaxation oscillators. Phil. Mag. 2, 978.

van der Pol, B. and J. van der Mark (1928): The heartbeat considered as a relaxation
oscillation, and an electrical model of the heart. Phil. Mag. 6, 763.

https://dx.doi.org/10.1103/PhysRevLett.104.077202
https://dx.doi.org/10.1103/PhysRevLett.104.077202
https://dx.doi.org/10.1103/PhysRevA.90.022302
https://www.nature.com/articles/s41598-018-31984-4
https://www.nature.com/articles/s41598-018-31984-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.49
https://doi.org/10.1007/BF01609348
https://doi.org/10.1007/BF01609348
https://dx.doi.org/10.1103/PhysRevA.87.043803
https://dx.doi.org/10.1103/PhysRevA.87.043803
https://aip.scitation.org/doi/10.1063/1.123482
https://aip.scitation.org/doi/10.1063/1.123482
https://doi.org/10.1016/j.physd.2014.07.003
https://doi.org/10.1016/j.physd.2014.07.003
https://www.nature.com/articles/nnano.2009.343
https://www.nature.com/articles/nnano.2009.343
http://www.nature.com/articles/nature10261
http://www.nature.com/articles/nature10261
https://www.nature.com/articles/nature06715
https://www.nature.com/articles/nature06715
https://doi.org/10.1016/j.physleta.2017.05.045
https://doi.org/10.1016/j.physleta.2017.05.045
https://doi.org/10.1090/S0002-9939-1959-0108732-6 
https://www.tandfonline.com/doi/abs/10.1080/14786442608564127
https://www.tandfonline.com/doi/abs/10.1080/14786441108564652
https://www.tandfonline.com/doi/abs/10.1080/14786441108564652


180 BIBLIOGRAPHY

Vanner, M. R., I. Pikovski, and M. S. Kim (2015): Towards optomechanical quantum
state reconstruction of mechanical motion. Ann. Phys. 527, 15.

Vatan, F. and C. Williams (2004): Optimal quantum circuits for general two-qubit
gates. Phys. Rev. A 69, 032315.

Veitch, V., C. Ferrie, D. Gross, and J. Emerson (2012): Negative quasi-probability as
a resource for quantum computation. N. J. Phys. 14, 113011.

Veitch, V., N. Wiebe, C. Ferrie, and J. Emerson (2013): Efficient simulation scheme
for a class of quantum optics experiments with non-negative Wigner representation.
N. J. Phys. 15, 013037.

Verhagen, E., S. Deleglise, S. Weis, A. Schliesser, and T. J. Kippenberg (2012):
Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
Nature 482, 63.

Viennot, D. and L. Aubourg (2016): Quantum chimera states. Phys. Lett. A 380,
678.

Viviescas, C., I. Guevara, A. R. R. Carvalho, M. Busse, and A. Buchleitner (2010):
Entanglement Dynamics in Open Two-Qubit Systems via Diffusive Quantum Tra-
jectories. Phys. Rev. Lett. 105, 210502.

Wallentowitz, S. and W. Vogel (1996): Unbalanced homodyning for quantum state
measurements. Phys. Rev. A 53, 4528.

Walls, D. F. and G. J. Milburn (1994): Quantum Optics (Springer-Verlag, Berlin
Heidelberg).

Walter, S., A. Nunnenkamp, and C. Bruder (2014): Quantum Synchronization of a
Driven Self-Sustained Oscillator. Phys. Rev. Lett. 112, 094102.

Wegner, F. (1980): Inverse participation ratio in 2+ε dimensions. Z. Phys. B Cond.
Mat. 36, 209.

Weigert, A., H. J. Wendker, and L. Wisotzki (2005): Astronomie und Astrophysik
(Wiley-VCH Verlag, Weinheim), 4th edition.

Weimer, H. (2015): Variational Principle for Steady States of Dissipative Quantum
Many-Body Systems. Phys. Rev. Lett. 114, 040402.

Weiss, T., A. Kronwald, and F. Marquardt (2016): Noise-induced transitions in op-
tomechanical synchronization. New J. Phys. 18, 013043.

Weiss, T., S. Walter, and F. Marquardt (2017): Quantum-coherent phase oscillations
in synchronization. Phys. Rev. A 95, 041802(R).

Wendin, G. (2017): Quantum information processing with superconducting circuits: a
review. Reports on Progress in Physics 80, 106001.

Wieczorek, W., S. G. Hofer, J. Hoelscher-Obermaier, R. Riedinger, K. Hammerer,
and M. Aspelmeyer (2015): Optimal State Estimation for Cavity Optomechanical
Systems. Phys. Rev. Lett. 114, 223601.

Wiersig, J. (2016): Sensors operating at exceptional points: General theory. Phys.
Rev. A 93, 033809.

http://dx.doi.org/10.1002/andp.201400124
http://dx.doi.org/10.1002/andp.201400124
https://dx.doi.org/10.1103/PhysRevA.69.032315
https://dx.doi.org/10.1103/PhysRevA.69.032315
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1088/1367-2630/15/1/013037
http://www.nature.com/articles/nature10787
https://doi.org/10.1016/j.physleta.2015.11.022
https://dx.doi.org/10.1103/PhysRevLett.105.210502
https://dx.doi.org/10.1103/PhysRevLett.105.210502
https://dx.doi.org/10.1103/PhysRevA.53.4528
https://dx.doi.org/10.1103/PhysRevA.53.4528
http://dx.doi.org/10.1103/PhysRevLett.112.094102
http://dx.doi.org/10.1103/PhysRevLett.112.094102
https://doi.org/10.1007/BF01325284
https://dx.doi.org/10.1103/PhysRevLett.114.040402
https://dx.doi.org/10.1103/PhysRevLett.114.040402
http://stacks.iop.org/1367-2630/18/i=1/a=013043
http://stacks.iop.org/1367-2630/18/i=1/a=013043
https://dx.doi.org/10.1103/PhysRevA.95.041802
https://dx.doi.org/10.1103/PhysRevA.95.041802
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1088/1361-6633/aa7e1a
https://dx.doi.org/10.1103/PhysRevLett.114.223601
https://dx.doi.org/10.1103/PhysRevLett.114.223601
https://dx.doi.org/10.1103/PhysRevA.93.033809


BIBLIOGRAPHY 181

Wigner, E. (1932): On the Quantum Correction For Thermodynamic Equilibrium.
Phys. Rev. 40, 749.

Wilson, D. J., V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg
(2015): Measurement-based control of a mechanical oscillator at its themal decoher-
ence rate. Nature 524, 325.

Wilson-Rae, I., N. Nooshi, W. Zwerger, and T. J. Kippenberg (2007): Theory of
Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction.
Phys. Rev. Lett. 99, 093901.

Winful, H. G. and L. Rahman (1990): Synchronized chaos and spatiotemporal chaos
in arrays of coupled lasers. Phys. Rev. Lett. 65, 1575.

Wiseman, H. M. and G. J. Milburn (1993): Quantum theory of field-quadrature mea-
surements. Phys. Rev. A 47, 642.

Wiseman, H. M. and G. J. Milburn (2009): Quantum Measurement and Control (Cam-
bridge University Press, Cambridge).

Wootters, W. K. (1987): A Wigner-function formulation of finite-state quantum me-
chanics. Ann. Phys.-New York 176, 1.

Würfel, P. and U. Würfel (2016): Physics of Solar Cells. From Basic Principles to
Advanced Concepts (Wiley-VCH Verlag, Weinheim), 3rd edition.

Xu, H., D. Mason, L. Jiang, and J. G. E. Harris (2016): Topological energy transfer
in an optomechanical system with exceptional points. Nature 537, 80.

Yoshioka, N., Y. O. Nakagawa, K. Mitarai, and K. Fujii (2019): Variational Quantum
Algorithm for Non-equilibrium Steady States. arXiv preprint 1908.09836.

Zalalutdinov, M., K. L. Aubin, M. Pandey, A. T. Zehnder, R. H. Rand, H. G. Craig-
head, and J. M. Parpia (2003): Frequency entrainment for micromechanical oscil-
lator. Appl. Phys. Lett. 83, 3281.

Zhang, J., B. Peng, S. K. Özdemir, Y.-x. Liu, H. Jing, X.-y. Lü, Y.-l. Liu, L. Yang,
and F. Nori (2015a): Giant nonlinearity via breaking parity-time symmetry: A route
to low-threshold phonon diodes. Phys. Rev. B 92, 115407.

Zhang, M., S. Shah, J. Cardenas, and M. Lipson (2015b): Synchronization and Phase
Noise Reduction in Micromechanical Oscillator Arrays Coupled through Light. Phys.
Rev. Lett. 115, 163902.

Zhang, M., W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, and L. Jiang (2019):
Quantum Noise Theory of Exceptional Point Amplifying Sensors. Phys. Rev. Lett.
123, 180501.

Zhang, M., G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, and M. Lip-
son (2012): Synchronization of Micromechanical Oscillators Using Light. Phys.
Rev. Lett. 109, 233906.

Zhang, X. H. H. and H. U. Baranger (2019): Heralded Bell State of Dissipative Qubits
Using Classical Light in a Waveguide. Phys. Rev. Lett. 122, 140502.

Zhao, M. and D. Babikov (2008): Coherent and optimal control of adiabatic motion
of ions in a trap. Phys. Rev. A 77, 012338.

https://dx.doi.org/10.1103/PhysRev.40.749
http://www.nature.com/articles/nature14672
http://www.nature.com/articles/nature14672
https://dx.doi.org/10.1103/PhysRevLett.99.093901
https://dx.doi.org/10.1103/PhysRevLett.99.093901
https://dx.doi.org/10.1103/PhysRevLett.65.1575
https://dx.doi.org/10.1103/PhysRevLett.65.1575
https://dx.doi.org/10.1103/PhysRevA.47.642
https://dx.doi.org/10.1103/PhysRevA.47.642
https://doi.org/10.1016/0003-4916(87)90176-X
https://doi.org/10.1016/0003-4916(87)90176-X
https://dx.doi.org/10.1038/nature18604
https://dx.doi.org/10.1038/nature18604
https://arxiv.org/abs/1908.09836
https://arxiv.org/abs/1908.09836
https://arxiv.org/abs/1908.09836
https://doi.org/10.1063/1.1618363
https://doi.org/10.1063/1.1618363
https://dx.doi.org/10.1103/PhysRevB.92.115407
https://dx.doi.org/10.1103/PhysRevB.92.115407
https://dx.doi.org/10.1103/PhysRevLett.115.163902
https://dx.doi.org/10.1103/PhysRevLett.115.163902
https://dx.doi.org/10.1103/PhysRevLett.123.180501
https://dx.doi.org/10.1103/PhysRevLett.109.233906
https://dx.doi.org/10.1103/PhysRevLett.122.140502
https://dx.doi.org/10.1103/PhysRevLett.122.140502
https://dx.doi.org/10.1103/PhysRevA.77.012338
https://dx.doi.org/10.1103/PhysRevA.77.012338


182 BIBLIOGRAPHY

Zhirov, O. V. and D. L. Shepelyansky (2006): Quantum synchronization. E. Phys. J.
D 38, 375.

Zhu, B., J. Schachenmayer, M. Xu, F. Herrera, J. G. Restrepo, M. J. Holland, and
A. M. Rey (2015): Synchronization of interacting quantum dipoles. N. J. Phys. 17,
083063.

Zlotnik, A., Y. Chen, I. Z. Kiss, H.-A. Tanaka, and J.-S. Li (2013): Optimal Waveform
for Fast Entrainment of Weakly Forced Nonlinear Oscillators. Phys. Rev. Lett. 111,
024102.

Zlotnik, A. and J.-S. Li (2012): Optimal entrainment of neural oscillator ensembles.
J. Neural Eng. 9, 046015.

Zurek, W. H. (2003): Decoherence, einselection, and the quantum origins of the clas-
sical. Rev. Mod. Phys. 75, 715.

Zwanenburg, F. A., A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg,
G. Klimeck, S. Rogge, S. N. Coppersmith, and M. A. Eriksson (2013): Silicon
quantum electronics. Rev. Mod. Phys. 85, 961.

https://doi.org/10.1140/epjd/e2006-00011-9
https://doi.org/10.1088/1367-2630/17/8/083063
https://dx.doi.org/10.1103/PhysRevLett.111.024102
https://dx.doi.org/10.1103/PhysRevLett.111.024102
https://iopscience.iop.org/article/10.1088/1741-2560/9/4/046015
https://dx.doi.org/10.1103/RevModPhys.75.715
https://dx.doi.org/10.1103/RevModPhys.75.715
https://dx.doi.org/10.1103/RevModPhys.85.961
https://dx.doi.org/10.1103/RevModPhys.85.961

	Summary
	Contents
	List of Abbreviations
	Introduction
	Theoretical Background
	Modeling dissipative quantum systems
	Continuously monitored dissipative quantum systems
	Positive-operator-valued measurements
	Photon counting
	Unbalanced homodyne detection
	Balanced homodyne detection
	Stochastic master equation vs. stochastic Schrödinger equation
	Conditional vs. unconditional dynamics

	Phase-space quasiprobability distributions
	Harmonic oscillator
	Spin

	Optomechanical system
	Optomechanical Hamiltonian
	Optomechanical instability

	Kerr oscillator
	Harmonic drive
	Parametric drive

	Synchronization
	Classical limit-cycle oscillator
	Classical synchronization phenomena
	Quantum limit-cycle oscillators
	Quantum synchronization measures

	Quantum computing
	Elements of quantum computing
	Quantum simulation


	Nonclassical States of Motion in an Optomechanical Limit Cycle
	Motivation
	Optomechanical system
	Methods and parameters
	Nonclassical mechanical limit-cycle motion
	Discussion and experimental implementation
	Summary

	Heralded Dissipative Generation of Nonclassical States in Nonlinear Systems
	Motivation
	Continuously monitored dissipative quantum system
	Heralded state preparation protocol
	Pseudosteady state and relaxation rate
	Stochastic quantum master equation
	Stochastic Schrödinger equation

	Nonclassical states in a Kerr oscillator
	Harmonic drive
	Unraveling different pseudosteady states
	Parametric drive

	Finite temperature and imperfect photon detection
	Experimental implementation
	Summary

	Quantum Synchronization
	Motivation
	Framework
	Phase space and phase variable
	Limit-cycle stabilization
	External signal
	Perturbation theory
	Synchronization measure
	Determining the signal strength

	Extended Arnold tongue
	Van der Pol limit cycle
	Harmonic oscillator vs. spin 1
	Semiclassical and squeezing signal
	Optimized signal

	Equatorial limit cycle
	Limit-cycle stabilization
	Semiclassical signal
	Optimized signal

	Maximum synchronization in the quantum regime
	Upper bound on quantum synchronization
	Tightness of the bound
	Discussion

	Interference-based quantum synchronization blockade
	Experimental implementation of quantum synchronization
	Summary

	Digital Quantum Simulation of Quantum Synchronization
	Motivation
	Spin-1 limit-cycle oscillator
	Mapping to a quantum computer
	Unitary time evolution
	Dissipative time evolution

	Methods
	Device characterization
	Dealing with hardware constraints
	Experimental demonstration of quantum synchronization
	Summary

	Conclusion and Outlook
	Acknowledgements
	Definitions and Conventions
	Quantum harmonic oscillator
	Operators
	Coherent states

	Spin system
	Operators
	Spin-coherent states


	Quantum Synchronization Formalism for Oscillator-Based Systems
	Basis Gates of the IBM Q System
	List of Symbols
	Bibliography

