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Preparation of metrological states in dipolar-interacting spin

systems
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Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate
metrological states in small dipolar-interacting spin ensembles with limited qubit control. For both regular and disordered spatial
spin configurations the generated states enable sensing beyond the standard quantum limit (SQL) and, for small spin numbers,
approach the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble
Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite
spin polarization and a non-Markovian noise environment. The developed black-box optimization techniques for small spin
numbers (N < 10) are directly applicable to diamond-based nanoscale field sensing, where the sensor size limits N and conventional

squeezing approaches fail.
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INTRODUCTION

Spin systems have emerged as a promising platform for quantum
sensing'™ with applications ranging from tests of fundamental
physics®>® to mapping fields and temperature profiles in condensed
matter systems and life sciences®. Improving the sensitivity of these
qubit sensors has so far largely relied on increasing the number of
sensing spins and extending spin coherence through material
engineering and coherent control. However, with increasing spin
density, dipolar interactions between individual sensor spins cause
single-qubit dephasing”® and, in the absence of advanced
dynamical decoupling®™", set a limit to the sensitivity.

Although dipolar interactions in dense spin ensembles lead to
complex evolution, they can provide a resource for the creation of
metrological states that enable sensing beyond the SQL. Current
approaches to create such states (i.e., GHZ states and SSS, see
Supplementary Fig.1) either require all-to-all interactions'>™'* or
single-qubit addressability'®~'8, which are challenging to imple-
ment experimentally. An alternative approach that relies on
adiabatic state preparation requires less control but results in
preparation times that increase exponentially with system
size'®2%, leaving this method susceptible to dephasing.

Variational methods provide a powerful tool for controlling many-
body quantum systems?'~23, Such methods have been proposed for
Rydberg-interacting atomic systems®*>> and demonstrated in
trapped ions?®. However, these techniques rely either on all-to-all
interactions (i.e,, trapped ions?®) or strong coupling within a finite
radius (i.e, Rydberg atoms®*?2%) which are generally absent in
solid-state spin ensembles. In this work, we develop a variational
algorithm that drives dipolar-interacting spin systems [Fig. 1(a)] into
highly entangled states. The resulting states can be subsequently
used for Ramsey-interferometry-based single parameter estimation’.
The required system control relies solely on uniform single-qubit
rotations and free evolution under dipolar interactions. Different
spatial distributions of the spins (later referred as ‘spin configura-
tion’) including 2D regular arrays and 3D random spin configurations

are investigated. The generated states resemble GHZ states or SSS
depending on the spin-pattern geometry and the depth of the
variational circuit. Experimental imperfections such as finite
initialization/readout fidelity and dephasing noise are discussed for
the example of a 2D regular array. The requirements on those
imperfections for beating the SQL are given. Potential experimental
platforms include dipolar-interacting ensembles of nitrogen-vacancy
(NV) centers, nitrogen defects in diamond (P1), rare-earth-doped
crystals, and ultra-cold molecules.

RESULTS

Variational ansatz

As shown in Fig. 1(b), the variational circuit S(0) = Up,...U U, is
constructed by m layers of unitary operations. Each U, consists of
the parameterized control gates

U =R, (g)o(r;)Ry(-%)Rx(g,)o(r,»), M

where R, (9) :exp(fiélzj’.\’:1 Sf’) are single-qubit rotations and
Sf(u € {x,y, 2}) is the y component of the j-th spin operator. D(1) =
exp(—itHqq/h) is the time evolution operator of the spin
ensemble under dipolar-interaction Hamiltonian
Haa = > iVi(25iS; — SiSf — S/S/).  The  coupling  strength
between two spins at positions r; and r; is

g yvih* (1 —3cospy)
i = 5
/ 4y, — ,jf 2

)

with o the vacuum permeability, 72 the reduced Planck constant, y
the spin’s gyromagnetic ratio, and §; the angle between the line
segment connecting (r; r;) and the direction of bias magnetic field.
An evolutionary algorithm?® (Method) is applied on the m-layer
circuit which contains 3m free parameters constituting the vector
0= (11,91,7,....71,9,T,, ... ,.Tm,Im,T},,). Each 1; is restricted to
T; € [0, 1/fq4] Where fqq is the average nearest-neighbor interaction
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Fig. 1 Preparation of metrological states by variational ansatz.
a Schematic of a dipolar-interacting spin ensemble in a 3D-random
configuration. b The quantum circuit consists of three parts: a
sequence for generating entanglement (entangler), phase accumu-
lation (Ramsey) and single-qubit readout in the P, basis. Dipolar
interactions during Ramsey interference are eliminated by dynami-
cal decoupling’?*2, The measurement outcome is processed on a
classical computer and used to determine the next generation for 6.
¢ Gate sequence of each variational layer and the Wigner
distributions for a 5-spin state after each gate. d lllustration of an
optimization process on a 3-spin system with m=1. The contour
plots show the 2D projection of the multidimensional 0 space for
fixed 8,. The orange points mark the sampling positions in the
parameter space. Convergence to the global maximum is reached in
the 63rd generation.

strength for the considered spin configuration. After the metrolo-
gical relevant states are generated by the variational ansatz, a
Ramsey sequence'%3! is applied to detect the external magnet
field signal. During the Ramsey propagation’ the spins accumulate a
field dependent phase for a time 7. Prior to the readout, a R,(1/2)
rotation converts this phase into a signal-dependent P, expectation
value. For the spin systems in which the dipolar interaction cannot
be turned on and off at will, a Waugh-Huber-Haeberlen (WAHUHA)
type dynamical decoupling sequence’®3? is applied to cancel the
dipolar interactions during the signal accumulation. The Ansatz in
Eq. (1) is the most general set of global single-qubit gates that
preserves the initial collective spin direction (3S;) /| {XS» |, here
chosen to be the x-direction?*, Supplementary Note 1. Although this
Ansatz does not enable universal system control**>, Supplemen-
tary Discussion, we show that with increasing circuit depth, sensing
near the HL can be achieved. A gradient-free black-box optimization
algorithm is used for searching the parameter space {68} for an
entangler that generates a desired metrological state. As shown in
Fig. 1(d), the algorithm samples the parameter space 0 following a
Gaussian distribution. In each generation, the algorithm iteratively
updates the mean and variance of the Gaussian distribution
according to the resulting cost function. This semi-random searching
process is able to effectively jump out of local maxima.

Metrological cost function
The Ramsey protocol shown in Fig. 1(b) encodes the quantity of
interest in the accumulated phase ¢ = wtg, with w the detuning
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frequency and tg the Ramsey sensing time. The Classical Fisher
Information (CFI)' quantifies how precisely one can estimate an
unknown parameter ¢ under a measurement basis. Our variational
approach treats the spin systems as a black-box for which the
algorithm finds a control sequence that maximizes the CFI
associated with the parameter estimation problem

dlog Tr[P,p,]\ >
CFly = > _Tr[P.p, (%) . 3)

The sum runs over the 2" basis states |z) = @Y, |s7), where s7 are
the eigenvalues of Si. P, =|z)(z| denotes the corresponding
measurement operator and p, the density matrix. The CFl is
chosen as cost function because it quantifies the sensitivity of a
measurement outcome to an external signal and measures the
maximal achievable sensitivity for a given measurement basis'>6,
Measurement operators such as parity (P]) or total spin
polarization (P®") result in a smaller outcome space and are
therefore more efficient in experimental implementations2>37-39,
but contain less information than P,. While we optimize the
measurement for P, in the main text, the obtained results also
hold for measurements of PP and P]. We found that when
measuring P or P] the results improve when compared to P,.
Please check Supplementary Fig. 3 for detailed discussion.

Numerical results for regular and disordered spin
configurations

We start by testing our approach for three distinct regular spin
configurations. Figure 2(a) shows the CFl after optimization for
spins arranged on a linear chain (blue), a two-dimensional (2D)
square lattice (orange), and a circle (green). All three configura-
tions result in states with CFl above the SQL. When multiple circuit
layers are added, the CFI further improves. Next, we simulate the
case of disordered three-dimensional (3D) spin configurations
(later referred as 3D-random). In our simulations the spins are
randomly located in a box of length L« N3 (constant spin
density). Compared to the regular spin array, the disordered case
shows a noticeable saturation of the CFl as a function of N
[Fig. 2(b)]. The N at which this saturation occurs can be increased
by increasing the circuit depth [Fig. 2(c)]. This result for small N is
different from the infinite sized systems where time evolution
under dipolar interactions D(1) alone is not sufficient to generate
metrologically useful entangled state (note, dipolar interactions in
a 3D-random configuration average to zero, e,
{(1 — 3cos26)) = 0). We attribute the observed metrological gain
in Fig. 2(b) to a finite-size effects for small spin ensembles. This is
in stark contrast to the 2D case where dipolar interaction does not
average out® or regular 3D patterns*'.

Entanglement characterization

We investigate the N-qubit entangled states created by our
variational method. The resulting states are visualized by plotting
out the phase space quasiprobability distribution of the spin
wavefunction in terms of the Wigner function (for more details on
how the density matrix of a spin system is connected to the
Wigner function, we refer to refs. 4>™*% examples of Wigner
distributions for specific states can be found in Supplementary Fig. 1).
Figure 3(a) shows the corresponding Wigner distributions for a
regular 2D spin array (top) and the average Wigner distributions
for 50 different 3D-random spin configurations (bottom). In both
cases, the optimized states resemble GHZ states when N is small
and m is large. For large N and small m, the states are close to SSS.
Non-Gaussian states that provide sensitivity beyond the SSS but
lower than GHZ states are also generated. Our algorithm tends to
drive the system into a GHZ state that lives in J = N/2 total angular
momentum subspace, as it has the unique property of attaining
the HL in Ramsey spectroscopy™®.

Published in partnership with The University of New South Wales
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Fig.2 Optimization results of different spin configurations. a Top: CFl for m =1 (circles) and m = 7 (squares) circuits. The colors correspond
to the configurations shown below. Bottom: schematics of different spin configurations. The numbers in the 2D square lattice pattern label
the order in which spins are added to form a lattice of size N. b Average CFl for 50 configurations of 3D-randomly distributed spins. Error bars
stand for the standard deviations of the optimized CFl from different spin configurations. (Error bars for m=2,3,5 are omitted for clear
presentation). ¢ Average number of layers required to achieve a CFl within a given percentage of the HL in the case of 3D-random
configuration. The fit m =aN® + ¢ with b =2.45 (goodness of fit R2=0.996) serve as a guide to the eye. The same data also fits to an
exponential model with slightly lower R? = 0.995. The investigation of deeper circuits becomes increasingly challenging as the efficiency of
the employed optimization algorithm steeply decreases for m >9. See Supplementary Figs. 2,56 and Supplementary Methods for more

details.

For quantitatively analysing the build-up of entanglement, the
von-Neumann entanglement entropy (E,w = —Tr(pslog,p;))*® is
used as a measure for the degree of entanglement between a spin
subsystem (p, = Trsp,;) and the remaining system. As an
example, we explore one case of a 3D-random configuration of
9 spins. Figure 3(b) shows the von-Neumann entropy of each spin
after employing a 2-layer circuit (left) and a 7-layer circuit (right). In
the case of m = 2, the achieved degree of entanglement is modest
with spin No.6 for example showing no substantial entanglement
with the surrounding spins. When the circuit depth is increased to
7, all spins display substantial entanglement. While the single-
particle entropy detects spins unentangled with the remaining
system, it does not determine whether all spins are entangled
with each other or entanglement is local. We distinguish these two
scenarios by identifying the smallest clusters with E,y < 0.4. For
m = 2, the spin ensemble segments into 5 clusters [Fig. 3(b)], while
for m =7 only 2 clusters are found. The results verify that multiple
layers are required to overcome the anisotropy of the dipolar
interaction [Eq. (2)] when building up entanglement over the
entire system. Finally, in Fig. 3(c) we analyze the size of the largest
cluster for each of the 50 spin configurations and observe an
overall increase of the largest cluster size and a decrease of the
variance.

State preparation time

Minimizing the preparation time is central in practical applications,
as it increases bandwidth, reduces decoherence, and enables
more measurement repetitions’. Figure 3(d) shows the average
state preparation time for 8 spins in 50 different 3D-random
configurations as a function of layer number. The preparation time

Published in partnership with The University of New South Wales

increases with the layer number and is inversely proportional to
the average dipole coupling strength of the nearest-neighbor
spins fqq. Compared to adiabatic methods'®, our approach results
in an 11 x reduction of the preparation time to reach the same CFI
for identical spin number and density (see Supplementary Note 8
for detailed derivation). This is of particular importance when
imperfections, such as dephasing, are taken into consideration.

State preparation under decoherence, initialization, readout
and erasure errors

Until now our analysis assumed full coherence and perfect spin
initialization and readout. We also assumed the spin configuration
is fixed during each run of the optimization. However, dephasing,
initialization, readout and erasure errors will be limiting factors in
experimental implementations. We next examine the impact of
such imperfections on state preparation and sensing. Figure 4(a)
and (b) show the optimized CFl in the presence of imperfect
initialization and finite readout fidelity for spins on a 2D square
lattice. The algorithm is limited by computational resources and
able to perform optimization for imperfect initialization for up to
8 spins. Beyond-SQL sensitivity is reached for 75% initialization
fidelity (for N<8) and 92% readout fidelity (for N<10),
respectively.

For further understanding the impact of readout fidelity on the
optimized metrological states, we plot out the resulting states
optimized under different readout fidelities. Figure 4(c) indicates
that without readout errors, the Wigner distribution of the
resulting state is close to a GHZ state. However, with a finite
readout error rate, our algorithm drives the system into a state
resembling a SSS. When the readout noise is further increased, the

npj Quantum Information (2022) 150
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Fig. 3 Entanglement build-up in metrological states. a Wigner distributions versus spin number for m=2 and m =7 in the case of 2D
square lattice and 3D-random configurations. The projected states into the J = N/2 total angular momentum subspace are shown here. b von-
Neumann entanglement entropy for one specific 3D-random configuration of 9 spins for m = 2 and m = 7. Individual spins are labeled with an
integer 1 through 9 to facilitate the discussion in the main text. The color of each data point corresponds to the von-Neumann entropy noted
in the color bar to the right. Entangled clusters are marked by solid black lines. ¢ Histograms depicting the maximal size of entangled clusters
for 50 3D-random configurations. The number of spins per entangled clusters increases with circuit depth. d Average CFI (blue) and state
preparation time (orange) versus m. Error bars indicate the standard deviations of CFl/state preparation time from different 3D random spin
configurations. The state preparation time is given as a unitless quantity fgaT with T = Y7 (1; + 7).

SSS transforms into a coherent spin state (CSS). The results agree
with the fact that GHZ states are sensitive to single-spin readout
errors while SSS are more robust®’.

In addition to the discussed spin readout and initialization errors
many experimental platforms also suffer from changing spin
configurations between consecutive runs. This so-called erasure
error is caused by a finite ionization/deionization rate in the case of
NV centers*®4° and a finite loading possibility in the case of cold
molecules°. Figure 4(d) shows the optimized average CFl versus the
average number of loaded spins N* per cycle. The obtained results
indicate that our approach is comparable robust to erasure errors,
with beyond-SQL sensitivity for loading efficiencies as low as 50%.

During the state preparation, decoherence (T,) reduces
entanglement. We assume independent, Markovian dephasing
of each spin as described by a Lindblad master equation®. Figure 4(e)
shows the CFl for various T, times using the previously optimized
gate parameters for 2D square lattice. While a finite T, decreases
the CFI, coherence times exceeding 0.5/f4q result in states with
beyond-SQL sensitivity for N < 8. Here, fy4 denotes the nearest-
neighbor interaction strength for 2D square lattice. For small T,
the resulting state will converge toward a CSS, which results in a
sensitivity set by the SQL.

Sensitivity in a non-Markovian environment

In addition to impacts on state preparation, dephasing affects
performance in Ramsey interferometry. In the presence of spatially
uncorrelated Markovian noise, entanglement does not lead to a
beyond-SQL scaling®™2 In a non-Markovian environment, this
limitation does not hold®~>. Such as in a solid-state spin system,
slow evolution of nuclear spins leads to correlated noise®°® on the
sensing qubit. We examine the performance of our optimized states
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in a non-Markovian noise environment. We adopt a noise model*3 in

which the amplitude of single-spin coherence reduces according to

Por (t) = por (0)e (i> @)

where v is the stretch factor set by the noise properties. The time
evolution under Ramsey propagation is simulated with a general-
ized Lindblad master equation®*. The sensing performance of
optimized states is characterized by the square of the signal-noise-
ratio SNR?  CFl,/t; (see Supplementary Notes 2-7). Figure 4(f)
shows their performance compared to the CSS and the GHZ states
for a v=2 and v=4 noise exponent®. The created entangled
states provide an advantage over uncorrelated states. For small
spin numbers, the SNR follows the HL scaling®®

Proposed experimental platforms

Candidate systems for realizing the proposed variational approach
need to possess long T, coherence time, strong dipolar-interacting
strength, and high initialization and readout fidelity. Recent
developments in solid-state spin systems and ultracold molecules
have demonstrated coherence times that exceed dipolar coupling
times (1/fq4q) as well as high-fidelity spin initialization and readout.
Table 1 lists the experimentally observed parameters for different
candidate systems, including NV ensembles, P1 centers in diamond,
rare-earth doped crystals, and ultracold molecule tweezer systems.

The listed T°) in Table 1 are lower bounds for the actual To.
Specifically, T represent the experimental coherence measured
under WAHUHA-type dynamical decoupling, which contains remain-
ing dephasing terms caused by dipolar interaction'’. On the other
hand, our protocol relies on the presence of dipolar interaction for
the generation of the desired entangled states. Therefore dipolar

Published in partnership with The University of New South Wales
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Table 1. Parameters of different experimental platforms.
7 DD Z (DD

Systems fdd T<2 ) fddTg ) Pini Freadout v

NV ensemble 35 79(2) 0.28 97.5%%° 97.5%%° 2 — 48
kHZ32  us3?

P1 centers  0.92 44 4.0 95%71  95%’' ?
MHz®  us™®

Rare-Earth 1.96 25 49 97%'7  94.6%’3 2.4+0.1°°

crystals MHZz’?  us”?

Cold 52 HZZ 80 ms’ 4.16 97%>°  97%° ?

Molecules

interaction between spins is part of the system Hamiltonian that
does not contribute to dephasing during the state preparation. Thus,
the relevant coherence is the single particle T, in the absence of
dipolar spin-spin interacting (see Supplementary Table 1).

DISCUSSION

This work introduces a variational circuit that efficiently generates
entangled metrological states in a dipolar-interacting spin system.
The required system parameters are within the reach of several
experimental platforms. When directly running this variational
method on an experimental platform, metrological states can be
generated without the prior knowledge of the actual spin locations.
While this study remains limited to small system sizes (N<10,
limited by computational resource), our results are of immediate
interest to nanoscale quantum sensing where spatial resolution is

Published in partnership with The University of New South Wales

paramount and the finite sensor size limits the number of spins that
can be utilized. Specific examples include the investigation of 2D
materials®’~6%, structures and dynamics of magnetic domains®'©2,
vortex structures in superconductivity>%4, and magnetic resonance
spectroscopy on individual proteins and DNA molecules®>-58,

Extending our investigation to N > 10 can either be achieved by
utilizing symmetries in regular arrays or directly testing our
optimization algorithms on an actual experimental platform. The
developed method is also potentially applicable to preparing
other highly entangled states relevant to quantum computing and
quantum communication.

METHOD

Gradient-free optimization: CMA-ES

The optimization in the 3m dimensional parameter space is highly
non-convex [Fig. 1(d)] due to the large inhomogeneity of the
interaction strength. In our setting, the previously used Dividing
Rectangles algorithm?>2* cannot converge to a beyond-SQL result
despite large number of iterations. We address this challenge by
using the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) as our optimization algorithm?°, CMA-ES balances the explora-
tion and exploitation process when searching in the parameter
space so that convergence is reached after <~2000 generations for
N, m < 10. This corresponds to about 10® repetitions of the Ramsey
experiment, which can be further reduced if collective measure-
ment observables are measured (Supplementary Fig. 3).

We reduce the complexity of the optimization by restricting T;
within [0,1/f4q] where fqq is the average nearest-neighbor
interaction strength for the considered spin configuration. Setting
a large parameter searching range for the interaction gates’ time T;

npj Quantum Information (2022) 150
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would potentially ensure the global maximum CFl location is
included in the parameter space. However, when the upper bound
of 1;is much bigger than 1/f4q, the evolution of neighboring spin
pairs is fast when sweeping t;. This would introduce a huge
amount of local maximum points in the parameter search so that
it is impractical for the black-box optimization algorithm to
converge to that global maximum point. A good value for fy4 can
be estimated from the doping level of the spin defects (NV, P1,
rare-earth ions) or the distance between the cold molecule
tweezers. Measuring the fast oscillation frequency in Ramsey
experiments will also provide an estimate of the fyq4.
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SUPPLEMENTARY FIGURES

Supplementary Figure 1: Wigner function and standard metrological states

a b C
Mt
-— "(‘.0’)
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Supplementary Figure 1. Three standard metrological states: Spin number N = 10. (a) Coherent Spin
State (CSS). (b) Spin Squeezed States (SSS). Generated by one-axis twisting Hoar = xJ2, xt = 0.3. (C)
Greenberger-Horne-Zeilinger (GHZ) state.

The Wigner function of the spin system provides an intuitive visualization tool of the spin wavefunction. It maps
the permutation symmetric subspace (J = N/2) of the N spin-1/2 system onto a quasiprobability distribution in the
phase space by calculating the expectation value of the rotated parity operator:

W,(0.¢) = Te[pR(8, )Mo R' (6, 9)]. (1)
The parity operator,
o' 25+ 1
My = 7 jgo 77—}‘07 (2)

Is the weighted sum of zeroth-order tensor operators [Tjolmm: = Omm+/(2§ +1)/(2J +1)C77 . Here, Cym o is a
Clebsch-Gordan coefficient [1].

In Fig. |1} three standard metrological states are plotted. Coherent Spin State (CSS) is the classical state which
reaches SQL and it’s the suitable state for sensing when there is Markovian noise during the Ramsey time or when the
experimental readout noise is high. Spin Squeezed States (SSS) beat the SQL by their squeezed variance of the spin
angular momentum along the signal direction. Greenberger-Horne-Zeilinger (GHZ) states are able to reach the HL
by utilizing the N fringes perpendicular to the equator to detect the external field simultaneously. All these standard
metrological states lie in the permutation symmetric J = N/2 subspace, so the Wigner function plots in the main
text are able to capture the essential features of the optimized metrological states.

Supplementary Figure 2: Optimization results of different types of dipole-dipole interaction Hamiltonian

The magnetic dipole-dipole interaction Hamiltonian under secular approximation has the general form [2] [3]:

Haa =Y Vij(25:0S-; — SuiSaj — SyiSy;) ®)
i<J

with

Vi — Ho Yivih? (1 —3cos Bi;)
VT 2

(4)

1<j

where pp is the vacuum permeability, v is the geomagnetic ratio of the spin, §;; is the angle between the line segment
connecting (rj,rj) and the direction of the bias external magnetic field (along z-direction in this case). Eq. is able
to describe the dipolar interaction for the spin systems with an arbitrary spin number as long as the spin angular
momentum operators S, obey the commutation relation [S;, S;] = i€;;5Sk. It applies to the spin-1/2 systems we
discussed in the main text and Nitrogen-Vacancy (NV) centers which are spin-1 systems.



a. NV ensemble

Here we consider NV ensemble and only |mg = 1) and |ms; = 0) are used as a 2-level system. The spin-1 operators
are

W1 (OLOy g fo—ioy 1000
SV=—(101],SY=—[(i 0 —i],SY=100 0 (5)
v2\op10/ * V2\lo0 i o 00 -1

If we only take the |ms = 1), |ms = 0) subspace into consideration, the relations between the ‘truncated’ spin-1
operators and the spin-1/2 operators are:

1 1 I 1
S = Vas, P, s = Va5l = = + 5.7, (6)

Plugging Eq. @ into Eq. , we get the effective dipole-dipole interaction Hamiltonian for NV ensemble |mg = 1),
|ms = 0) subspace [214]:

1y (1 1y (1 1y (1
Hopv =Y Viy(S 85 - 850 = 5,8,2). (7)
i<j
Fig. a) shows the Classical Fisher Information (CFI) optimization results for 2D square lattice spin configuration.
They are similar to the results we get in Fig.(2) of the main text for spin-1/2 systems.

a b
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Supplementary Figure 2. Different types of dipolar interactions: (a) Optimization results for
NV-ensemble. The CFI saturates the theoretical upper bound Heisenberg Limit (HL) when the variational circuit
layer number goes up from 1 to 7, and the CFI results are ‘oscillating’ for even/odd number of spins from shallow

circuit. (b) Optimization results for Ising type spin interaction when there is large local disorder in the system.

b. Ising type interaction (large local disorder)

When the system has large local disorder, the flip-flop terms in the dipolar interaction Hamiltonian Eq. are
suppressed because of the large energy gap:

1 1 1 1 1 1 1

i<J
=568 + S v (s B s - B ) - gy ®)
i i<j

~ 3658 + 3 2v, 805,
7

i<j
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This location-dependent single-spin energy shift (J;) can be canceled by spin-echo pulse sequence where the inter-
action gate D(7) needs to be applied:

D(7) = Ry(m) exp[—iT Hpp,1sing| R () exp[—i7 HpD 1sing]
1y (1 9
= exp [ —ir Y 21528 ®)
i<j

Eq. @D is also valid when the local disorder d; is comparable with the interaction strength V;;. If there is local
disorder in the dipolar-interacting spin ensemble, applying spin-echo will generate the interaction gate D(7) where
the local disorder terms are canceled. o

The CFI optimization results by using the effective Ising type interaction Hamiltonian Hpp 1sing = Y ;- j 2V S’i?)S’ S)
is shown in Fig. [2| (b).

From Fig. 2| the CFI results close to the Heisenberg Limit are observed, indicating that the variational method
can be applied to different kinds of spins in solid state systems and generate highly entangled state for high-precision
quantum metrology. We also observe that for shallow variational circuits, the CFI ‘oscillation” between even and
odd spin numbers only appears when there are flip-flop terms in the Hamiltonian. For Ising type interaction, the
‘oscillation’ disappears.

Supplementary Figure 3: Optimization results by using Pf°*, PT as measurement bases
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Supplementary Figure 3. Optimized CFI with different measurement bases: (a) 2D square lattice using
observable P!°t, (b) 3D-random configuration using observable P°* (averaged over 5 cases), (¢) 2D square lattice
using observable P, (d) 3D-random configuration using observable P (averaged over 5 cases). All error bars
indicate one standard deviation of the CFI from different spin configurations.

The optimization results shown in Fig.2 in the main text are obtain by using P, as the measurement basis for the
CFT (cost function) calculation. Although measuring all the diagonal elements in the density matrix of the resulting



states provides the maximum information one can get from single-qubit measurement and a large Hilbert space for the
optimizer, it leads to an exponentially large (2V) experimental repetition number when the CFI needs to be estimated
from experimental data. Thus, we test the variational method on two other measurement bases which require less
repetitions for readout.

The measurement basis on total spin polarization along z-direction is given by
P =|J=N/2,J.)(J = N/2,J.]|, (10)

where J is the total spin angular momentum quantum number and J, is the total spin angular momentum projection
quantum number that runs from N/2 to —N/2. P°' has N + 1 outcomes, so it scales linear with the system size.

The optimization results by using the CFI on P! as cost function are shown in Fig. [3| (a)(b). Surprisingly,
compared to the results by using P,, the optimization results from using P!°" are improved by about a factor of 1.3
for the 3D-random spin configuration. Since all the information one can extract from P°* are contained in P,, we
attribute this improvement to the simpler parameter space structure that P!°* provides to the optimizer. Less local
maximum points in the parameter space will help the optimizer to converge to a high CFI point, especially when the
dimension of the parameter space (3m) is large.

Parity of the spin ensemble,
Pr=1"o.,, (11)
provides a constant (2) dimensional outcome space for experimental readout. Improvements are also observed in 2D
square lattice and 3D-random spin configurations (Fig. [3|(c)(d)).

Supplementary Figure 4: Mutual Information of the Metrological States

The Rényi entropy of order n of a subsystem A is defined as

Sn(A) =

log Tr(p}}) (12)

1—n

which describes the general entanglement correlation between the subsystem A and the full system [B6]. In the limit
n — 1, the Renyi entanglement entropy approaches the von Neumann entanglement entropy Eyn = — Tr(pa log pa),
which we used to characterize the entanglement of the metrological states in Fig.3 of the main text. The 2-nd order
Rényi entropy reflects the purity of the state Tr (pi) < 1. It is an indication of entanglement when the purity of the
subsystem is smaller than the purity of the full system [7], Tr (pi) < Tr (piB).

By measuring the 2-nd order Rényi entropy, we can calculate the mutual information between the two subsystems
A and B.

Iz = SQ(A) + SQ(B) — SQ(AB) (13)

The scaling of the mutual information with respect to the subsystem size is one of the keys to study the entanglement
properties of interacting quantum systems, e.g. area law and volume law [8[7/9]. Here, we numerically calculate the
mutual information of the 9-spin metrological states generated by the variational circuits with different layer numbers.

As shown in Fig. [4] unlike CFI, the mutual information does not monotonically increase with the circuit layer
number m. If entanglement is quantified by mutual information, all the metrological states we studied here have
‘more’ entanglement compared to the GHZ states, even though the CFI are lower. These results reflect that deep
entanglement does not necessarily lead to better sensing performance (CFI), global and shallow entanglement is
preferred for Heisenberg-limit quantum sensing.

We can understand the relation between CFI and entanglement by taking a 4-qubit GHZ state |GHZ) = %(\000@ +

|1111)) as an example. |GHZ) has the highest CFI. However, there is only 1 ebit of entanglement between the
two qubits on the left and the two on the right. S3(A) = S32(B) = 1,Iap = 2. Consider another state |¢)) =
1(]0000) + [1111) + [0101) 4 |1010)). The amount of entanglement between the left and right two qubits are 2 ebits.
Sa2(A) = S2(B) = 2,Iap = 4. The last two terms in |¢)) contribute negatively to the CFI of the state, even though
they provide more entanglement.



Mutual Information in Metrological States
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Supplementary Figure 4. Mutual information versus subsystem size of the 9-spin metrological states:
The spatial spin configuration is the same as Fig.3(b) (case No.2 in 50 random cases) and the m = 1-7 results are
calculated (including the states that shown in Fig.3(b) left/right in the main text). The asymmetry of the mutual

information with respect to the subsystem size comes from the random spin locations.

Supplementary Figure 5: Complete CFI data for Fig.2 in main text

The complete data for dipolar-interacting spin systems’ CFI optimization is shown in this section. Fig. a) shows
the 50-cases averaged optimization results for 3D-random spin configurations, the variational circuit layer number m
is chosen from 1 to 10. The optimized CFI results are approaching to the Heisenberg Limit (HL) when more layers
(m) are used. However, when m > 7, the CFI results stop increasing. This CFI ‘saturation’ effect might be caused
by two reasons. First, when m is large, the number of the local maximum points in the high dimensional parameter
space increases. This could potentially cause the optimizer to stuck in the local maximum point. Sometimes, take
N =7,m = 10 data in Fig. a) as an example, adding more variational layers even leads to a lower CFI optimization
result. The ‘local maximum’ problem could be solved by more advanced and powerful optimization algorithms, such
as reinforcement learning [I0HI2], and more computational resources. Second, the ‘saturation’ effect reflects the global
maximum CFI one can reach, no matter what kind of optimization algorithm is applied. It’s still an open question
what is the highest CFI the spin ensemble could reach for a given configuration.

Fig. [f|b)-(e) show the CFI optimization result for 2D random (10-cases average), 1D chain, 2D square lattice and
2D symmetric cycle spin configurations. The results of regular patterns are better than those of 2D/3D-random
patterns. Due to the angular dependent term (1 — 3cos?6) in dipolar interaction, the results from 2D-random spin
configuration (Fig. [5{b)) are better than the results from 3D-random patterns (Fig. [f|(a)).
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Supplementary Figure 5. The complete CFI data: (a) 3D random, (b) 2D random, (c¢) 1D chain, (d) 2D
square lattice, and (e) 2D circle. All error bars indicate one standard deviation of the CFI from different spin
configurations.

Supplementary Figure 6: Required layers to reach given CFI for 2D square lattice
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Supplementary Figure 6. Scalability of 2D square spin lattice: Left: Schematic of a 2D square lattice
pattern. The numbers label the order in which spins are added to form a lattice of size N. Right: Number of layers
required to achieve a CFI within a given percentage of the HL.

As shown by the schematic on the left, the distances between spin No.4 and spin No.5, 7, and 9 are the same, so
the interaction strengths between each pair are the same. Similarly, the distance between spin No.4 and spin No.2,
3, 6, and 8 are the same (smaller). Therefore, the plateau features in Fig.@ are likely due to this symmetry: adding
one more spin to the lattice does not require an extra layer to reach a given percentage of the CFI.

Supplementary Figure 7: Orders of interaction

Due to the decaying feature (7%) of dipolar interaction strength, the resulting states might be mainly generated by

nearest-neighbor interaction. For studying ‘how much’ interaction is essential for generating the resulting entangled
states, we calculate the overlap (state fidelity [13]) between the original state and the new state, which is generated



by using the cutoff Hamiltonian and optimized parameters. A cutoff interaction strength feutof is chosen, and all the
pairwise potential V;; smaller than f.utos are set to zero in the cutoff Hamiltonian. Fig. m shows the relation between
the state fidelity F' versus feutof- A state fidelity value less than 1 is observed when feutof is set to be equal to the
averaged nearest-neighbor interaction strength fqq. This result reflects higher order interactions in the spins ensemble

are utilized for the metrological states generation.
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Supplementary Figure 7. Long range interaction for preparing metrological states: Average state
fidelity vs. different cutoff strength in Hgqq. The shaded area indicates the standard deviation. Data obtained from
3D-random N = 10, m = 5, 50-cases optimization results.

Supplementary Figure 8: Non-Markovian noise sensing performance in 3D random spin configurations
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Supplementary Figure 8. Sensing performance of 3D random spin configurations: Average Ramsey
protocol’s results of the generated entangled states in 3D random configurations when considering non-Markovian
noise in the signal accumulation step. Blue and orange correspond to two different noise models (v = 2 and 4).

Supplementary Figure 9: Optimized states with different readout fidelity

We run the optimization with imperfect readout for N = 4 and N = 10 2D square lattice spin configurations. The
optimized states resemble GHZ states (high RF), SSS (low RF), CSS (RF close to 50%). For N = 4 case, the Gaussian
state appears for RF lower than 92%, but for N = 10 case, the Gaussian states appears when RF is about 96%. We
expected that for large spin system with finite RF, Gaussian states (e.g. SSS) are advantageous for quantum-enhanced

metrology.
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Supplementary Figure 9. Highly entangled state requires high readout fidelity: Optimized states’
Wigner distributions when finite readout fidelity (RF) is assumed in the optimization process. The ’CSS’ row
reports the CFI value when using the CSS for sensing under same RF.

SUPPLEMENTARY TABLES

Supplementary Table 1: Relative experimental parameter table (full)

Supplementary Table 1. Experimental platforms’ data

System ‘ TP TP faa Pini Freadout v
NV ensemble 1.58(7)s* 7.9(2) us® 35kHz" 97.5%° 97.5%° 2 — 4P
P1 centers 0.8ms®(DEER) 4.4pst 0.7kHz°,0.92MHz! 95%° 95%° ?
Rare-Earth crystals 23.2 4+ 0.5ms® 2.5ush 1.96MHz" 97%! 94.6%’ 2.4+0.18
Cold Molecules 15k 80ms' 52Hz' 1.5kHz™ 97%™ 97%™ ?

a T H.Taminiau, NComm 2018, ® H.Zhou, PRX 2020, ¢ M.D.Lukin, PRL 2015, ¢ L.Childress Science 2006
¢ T.H.Taminiau, NComm 2021, f N.Yao, Nature 2021
¢ P.Bertet, Science advances 2021, ! A .Reiserer, PRL 2021, ! J. Thompson, Science 2020, J J. Thompson, NComm 2020
kK M.R Tarbutt PRL 2020, ! B.Yan, J.Ye, Nature 2013, ™ J Doyle, PRL 2020

Based on the simulation results shown in Fig.4(c) in main text, we need fzqT> > 5 to generate metrological states
that beat the SQL. It’s worth mentioning that the 75 in this situation stands for the coherence time without the
dipole-dipole interaction’s influence. During the state preparation step, the dipolar interactions between the spins
are included in the system Hamiltonian for the entanglement generation (D gate in Fig.1(c) in main text). Thus, the
T»PP) in Table [1|is a lower bound and T5(°**") is a more precise estimation for the spin coherence time.
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SUPPLEMENTARY NOTES
Supplementary Note 1: Designing the variational circuit

In this section, we discuss how to choose the experimentally realizable elementary gates in the variational sequence
of the entangler based on limited quantum resource [14] [15].

c. Entanglement generation gates from two-body interaction Hamiltonian and global rotations

Consider a two-body interaction Hamiltonian:

Hiy = ZV;] (JISZZ'SZJ' + JSSi . S]) . (14)

i<j
In this Hamiltonian, S = (S, Sy, S-) is the vector of spin-1/2 operators, V;; is the interaction strength between spin
i and j which depends on their locations, and .J!(# 0), J® are the Ising and symmetric coupling constant respectively.
The elementary gates in each layer of the variational circuit for preparing metrological states (Fig.1(c) main text)

include two free evolutions under the interaction Hamiltonian D(7), D(7'), one global rotation along the z-axis R, (1)
and two fixed 7/2 rotations R,(—7), Ry(%) along the y-axis. We define the interaction gate in the z-direction as

D.(r) = exp(—iTHin /h) = exp | —it Y Vij (J'S.:S.; + JS; - S;) /h| . (15)
i<j
The interaction gates in other directions can be obtained by /2 rotations:
Dy y(7) = Ry 2 (7/2) D= (7) Ry 2(—7/2)
: I 5 (16)
= exp —ZTZ ‘/ij (J Sm,yiSI,yj + J°S; - SJ) /h .
i<j

In Eqgs. , the symmetric interaction term stay unchanged because inner product is conserved under global

rotation and the ‘direction of interaction’ is only determined by the Ising term. Using these definitions, we simplify
the gate set in each layer as

Us=Ry (3) DRy (-3) R 0) D (1)

(17)
=D, (T;) R, (9;) D, (1;).

In the next two subsections, it will be shown that the sequence in Eq. is the most general gate set that uses
only global rotations and preserves the collective spin direction along x-direction.

d. Preservation of the collective spin direction

Define the x-parity operator P, = [INo,; = P!, with P2 = I. This operator describes the parity of a state in
z-direction and is related to the global 7 rotation along z-axis up to a phase constant, R,(m) = exp(—im ), Szi) =
(—i) N o,;. Applying the x-parity operator onto individual spin’s angular momentum operator gives PSPy =
(045,05); = £5,;. Thus the interaction gates along z- and z-direction conserve the x-parity, P,D, Py = D, ..
Similarly, the only global rotation that conserves x-parity for arbitrary angles is R, («}). Then, based on Eq.(1) in the
main text, the unitary operator of the whole control sequence conserves the x-parity

P,S(0)P, = PUy,.. UL Py,
= PmHi[Dz (Tz/) R, (191) D, (Ti)]Pm (18)
= S5(0).
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The initial spin state pointing to the +z-direction is an eigenstate of P,: P, |TI>®N = |Tz>®N. Thus, any state
produced by this variational circuit remains an eigenstate of P,:

= P,S(0) [1,)°"
= P,S(0)P,P, 1)V (19)
= |v(0)) .

P, |¥(0))

Now consider the expectation value of the total spin angular momentum operator J, =Y, Sy (1 € {z,y, 2}):

(Jy,2) = (W(O)] Jy,- |¥(8))
= (W(0)| PuPyJy - Pr Py [V(8)) (20)
=—(Jy.) =0.

Thus, the collective spin direction (J)/|(J)| always points along the z-direction.

e. Choosing the most general gate set

To preserve the collective spin direction along z-axis, the global rotation and interaction gates that can be chosen
are R;, D;, D, where D, stands for the interaction gates along any direction perpendicular to the z-direction.
Combining R, and D, can generate any D, thus the simplest gate set fulfilling all the requirements is D, R, D, as
described by Eq.(1) in the main text.

The derivations and results in this section about selecting the variational sequence agree with ref.[14]. However,
the interaction Hamiltonian we discuss here is more general. In Eq. 7 when J' = 1,J° = 0, the interaction
becomes Ising type interaction which is equivalent to the Rydberg interaction in ref.[I4I15]. The Ising interaction
can also describe spin systems with large local disorder. The optimization results are shown in the next section.
When J' = 3,J% = —1, Eq. becomes the dipolar interaction Hamiltonian between spin-1/2 particles. When
J''=2,J% = —1, it becomes the dipolar interaction Hamiltonian between spin-1 particles (such as NV centers). The
simulation results for this case are shown in the next section. When J' = 1, J% = —1, the interaction can describe
the dipolar interaction between cold molecules [16].

Supplementary Note 2: CFI with respect to angle and frequency

In general, the Classical Fisher Information (CFI) measures the sensitivity of a statistical model to small changes of
a parameter 6 [I7, [I8]. Let Z be a random variable and P,(0) = P(z|0) be its probability distribution which depends
on 0. Let © be an unbiased estimator of 0, i.e.

0=(0)=>_©-P.0). (21)

From Eq. and the fact that the sum of probabilities of all outcomes is 1,

Subtracting Eq. multiplied by 6 from Eq. , we get

1= YO 0) 2P0

1 0
=S PAOO - O) PO o
1 0
= (O~ 055557
0
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Letting X = © —f and ¥ = % log P, (), by the Cauchy-Schwartz inequality for random variables: (XY)? <
(X2)(Y?), we have

© -0 (Zrsr0) )=, (29

where
(0 -10)%) = (0% - (20(8) — (6%))
= <@2> - (292 0%) (26)
= (0?) - (0)
= A©?

is the variance of ©. Define

2
CFI= Y P.(0) (8‘99 log Pz(e)) , (27)

we have
1
AO? > . 28
— CFI (28)
If the measurement is repeated M times, then by the additive property of CFI, we obtain the Cramér-Rao bound:
1
2
> .
AO* > Ol (29)

In our variational circuit, we use CFI with respect to an infinitesimal angle ¢ as the cost function to generate
entangled states. In our program, we use a method similar to parameter shift to calculate the CFIy4 of our optimized
states [19/20021]. In the following notation,

1. z represents a multi-qubit state in the z-basis;
2. U(¢) = e~**’v is the rotation operator where ¢ is a small angle;
3. 1 is the state we create from the variational circuit;

4. P,(0) is the probability of measuring the state z with the state after rotation.

Then
S5 PO, el
5o @ @],
WO+ U @R 0],
=i 001 (1) G~ 12410, ) 9 (30)
Note that assuming the rotation operator U(¢) = e~ **/v = U,(¢) along y-axis is for calculation simplicity. In

experiments, the signal (e.g. the external B-field) usually induces a rotation along z-axis, U,(¢) = e~*/=. It’s
equivalent to assume that the prepared state is firstly rotated by a R, (7/2) pulse and then accumulates a signal ¢
along y-axis, or firstly accumulates a signal along z-axis and then rotated by R,(—n/2) pulse [I8]. In another word,
R, (—m/2)U.(¢) = Uy(¢) Rz (m/2), so the signal accumulation process we assumed in the calculation is able to simulate
the experiments.

After creating the entangled states, we want to know how useful they are in a Ramsey spectroscopy, where the signal
we want to detect is a frequency w. By the same calculation as above except the difference that we take derivative
with respect to w = % where tg is the Ramsey sensing time, we have

CF1, = CFl, - 3. (31)
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Supplementary Note 3: Relation beteen CFI, and SNR in single qubit Ramsey experiment

We illustrate the Ramsey protocol for a single qubit.
1. The qubit is initialized into the ground state |0).

2. A 7 pulse along the y-direction is applied to transform it into a superposition state %(|O> + |1)). Its matrix

o(t) = G 1) . (32)

3. After evolving under noise and a signal with frequency w for time ¢, its state becomes

1 1 e—iwte—2’yt
p(t) = 5 <€iwt627t 1 ) (33)

form is

where v is the decoherence rate.

4. A second § pulse along the x-direction is applied for readout. The qubit is then in the state

R, () p®EL (3) (34)

5. After the rotation, the probability of the qubit being in the ground state is

1 1
PO = 5 + 56_2’% sin wt. (35)

The CFI with respect to w is

2 2 2 2
CFIW_1<8PO) N 1 (8P1> __ t*cos"wi (36)

Py \ Ow E Oow et —sin? wt

Assuming only quantum projection noise, the Signal-to-Noise Ratio (SNR) is % where M is the total
w7 Po(1—Fo

number of measurements. Then
M+t? cos? wtdw?

SNR? = .
et — gin? wit

(37)

Assuming no time overhead, i.e., M = % where Tio¢ is the total measurement time and tg is the time between
Ramsey pulses, we obtain the relationship

Ttot

CFI, -
1333

- 6w? = SNR2. (38)

In unit time (Tio; = 1s), when SNR = 1, the smallest signal we can measure is

1
F P — 39
Y= /M -CFL, (39)

leading to the saturated Cramér-Rao bound.
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Supplementary Note 4: Maximum Likelihood Estimator

Since a measurement collapses a quantum state to an eigenstate of the observable, it’s impossible to directly measure
P(0). In experiments, we repeat the sequence to obtain the results for estimating the P(6) and then get an estimate
value of #. To understand the relation between the variance of the estimation and CFI, we introduce the Maximum
Likelihood Estimator (MLE), which has asymptotic properties to saturate the Cramér-Rao bound. An experimental
implementation of MLE to estimate the phase shift of an entangled four-photon Dicke state is given in [22]. A
proof that MLE is an unbiased estimator which asymptotically saturates the Cramér-Rao bound is given in [23]. We
summarize the proof below.

Let X = {X1, X3, ..., Xar} be a collection of independent and identically distributed (i.i.d.) random variables with
a parametric family of probability distributions {P(X10)|0 € ©}, where 6 is an unknown parameter and © is the
parameter space. Let x = {x1, 22, ...,xp|z; € X;} be the experimental data set from M repetitions. The goal is to
estimate 6 (the signal we want to measure) from x, i.e., find 6 that is most likely to produce the outcome x. Thus,
the normalized log-likelihood function is defined as

1
L (0) = 57 log P(X|0) = —logHP (X:]0) = § log P(X;[6). (40)
=1 1=1

A MLE maximizes the log-likelihood function

@MLE = argmax L]V[ (9) (41)
0co

In the following, we first show that

1. ©pLE converges to the true parameter 6g;
2. the distribution of vV M (OypE — 0y) tends to a normal distribution N (O, ﬁ) as M increases.
0

In other words, not only does the MLE converge to the true parameter, it converges at a rate ﬁ
Define

L(0) = (log P(X|0))s, (42)

which denotes the expected log-likelihood function with respect to 6y, then by the Weak Law of Large Numbers
(WLLN), the average outcomes from a large number of trials should approach the expected value:

M—o0

V0, L (0) —— L(0). (43)
In fact, 6y maximizes L(6):

V0, L(0) — L(b) = (log P(X|0))e, — (log P(X]00))s,

/o PX)
=\ los P(X90)>

5 (5 e

=1-1=0.

IN

Moreover, we show that 6 is the unique maximizer. Jensen’s inequality states that for a strictly convex function f
and a random variable Y,

(F(V)) > f((Y)). (45)
Taking f(y) = —logy and P(X]0) # P(X|6p), we have

P(X/0) POXIO)\
< ~loa P(X90)>90 z _log<P(X‘90)>eo -0 (46)
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or
L(6p) > L(6). (47)
Therefore, since
1. ©OpmLg maximizes Ly (6),

2. 0y maximizes L(0), and

3. La(0) 2222 1(9),
OMLE converges to 0.

Now we use this property to prove that the distribution of Oy tends to the desired normal distribution, where
we will apply the Central Limit Theorem (CLT): Suppose X = {X1,..., Xjs} is a sequence of i.i.d. random variables
with (X;) = pu and Var(X;) = 02 < co. Then as M — oo, the random variable v/M (X — ) converges in distribution
to a normal N(0,0?).

We start with the Mean Value Theorem for the function L', the derivative of Ly, (continuous by assumption), on
the interval [Onrg, Oo]:

0 = LYy (©mLe) = Ly (60) + Ly (61) (0 — OmLg)

= 0y — OmLE = _ZA’/[EZOi
Mm\V1
— \/M(QO — @MLE) = —\/ML/M(GO) (48)

Ly (01)
for some 61 € [OmLE, 6p]. We analyze the numerator and denominator respectively. The numerator
M
Lh (o) =— Z (log P(X[60))’

=1
M

> (log P(X;160)) = L' (60)

1

i

=[=

<.
Il

(49)
(log P(Xi|60))" — ((log P(X[6))")o,

I
S
M-

=1

:% (ZlOgP(Xi|90)> - <(10gP<Xi|90))I>90

i=1
where the last equality is obtained from the linearity of expected value and derivative. By the CLT, the distribution
of VML), (6) converges to
N(O,Vargo (log P(XZ-|90))’> (50)
where the variance
Varg, (log P(Xi|fh))" = ([(log P(Xi[00))]*)s, — {(log P(Xilfo)")5,
2
= % Platto) () - @ (51)

by the definition of CFI and that 6y maximizes L(6). By the consistency property, ©ypg converges to p, and thus
0, converges to #y. The denominator

M
" (01) — L (00) = Zlogpxwo — {([log P(X1]60)]")a, (52)
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by the WLLN. We further show that Eq. is in fact the additive inverse of CFI:

< 82
log P(X1|90)>
6 o

= Y [log P(x60)]" P(6,)

([log P(X1160)]")s,

T€X,
P"(z]60) [ P'(x|60)* By
790;1 ( P(SU|900) - (P(x9§)> )P(ﬂ@o) (53)
_ "y — W
_m;;lP (]6o) mez);l Blali0)

=0— CFly, = —CFlIy,.
Finally, Eq. becomes

CFly 1
— P 0 — [
VM 0y — Omee) = N (O, CF130> N (0, CFIGO)

» 1
— @MLE SN <90, a CF190>

Thus, the MLE is unbiased and asymptotically saturates the Cramér-Rao bound.

Supplementary Note 5: Master equation for a non-Markovian environment

To simulate the performance of our optimized states during the Ramsey measurement with non-Markovian noise,
we use a time-local master equation given by [24]. A brief summary of the derivation is given below.

1. The time evolution of a state p is described by

p(t) = A(D)[p(0)]; (55)

where A(t) includes both the dissipative part and the unitary encoding part. Since A(t) is a physical operator
that maps a density matrix to a density matrix, it must preserve Hermicity, unit trace, and positivity. Moreover,
any quantum state p can be extended by an ancilla to a state p ® o of a larger system. The corresponding map
A ® 1 must also be positive. This property is known as complete positivity [25]. Thus, A(t) is a completely
positive and trace preserving (CPTP) linear map.

2. Define the action of A. Let £(C?) be the Hilbert space of linear operators acting on C?, where the inner product
is defined as (o,7) = Tr(o'7) (the Hilbert-Schmidt inner product). Let ££(C?) be the Hilbert space of linear
operators acting on £(C?) which has dimension d* x d*. Let {l;};—;, 42 be an orthonormal basis of £(C?).
Then the action of A € LL(C?) on 7 € £(C?) can be expressed as

d2
Al = (s Al (L, )
i,j=1 (56)
= (Ab)71
where the matrix A has elements
Nij = (li, A[l;]) (57)

and b is a vector with entries b; = (l;, 7). Thus, A has a unique correspondence with the matrix A.

3. A € LL(C?) is trace- and hermicity-preserving if and only if its matrix representation A can be written as

)

where 0 is the zero row vector of length d?—1, m is a real column vector of length d>—1, and M is a (d*—1)(d?—1)
real matrix.



17

4. For a single qubit, any operator p on C? can be written as
1
=§(I+v-0') (59)
where v is a three-dimensional real vector and o is the vector of Pauli matrices. Then a map A whose matrix
representation is given by Eq. acting on p gives

Al = %(I +(m+Mv)- o). (60)

5. The Nakajima—Zwanzig projection operator technique can be used to describe non-Markovian behavior [26].
The basic idea of the technique is that the operation of tracing over the environment is regarded as a projection
pc — Ppc where p is the composite state and P is an projection operator. The technique makes use of some

fairly general assumptions and gives
t
0= [ Ktopls)ds (61)
0

where K (t,s) is a memory kernel.

6. Applying Eq. to Eq. gives [27]

K(t,s) o A(s))p(0) ds

/ (t,s) 0 A(s) o A(t) "1 )A(t)[p(0)] ds

_ (62)
which is of time-local form.
7. Both A(p) and E(p) can be expanded in the form of Eq. (56):
p(t) = A(1)[p(0)] = [M)b(0)]", (63)
%P( ) = E()[p(t)] = [=(t)b(1)] "1 (64)
Then
d d T _ = T
S 0(t) = [SA©b(O)]L = [EOA®B(O)] " (65)
The corresponding matrix relation is
d -
N8 = =AY (66)
Equivalently,
=(t) = %y)A(t)*l. (67)

8. Assume the noise to be independent, identical, and phase covariant, so that each qubit is described by a map
A(t) = Ut) o I'(t) and that the uncorrelated noise commutes with signal accumulation [24/28]. Consider the
evolution of one qubit described by A(t) = U(t) o T'(t) . U(t) is defined as

U)p(0)] = U1)p(0)U' (1) (68)

where U(t) = e o represents the signal accumulation. By Eq. and Eq. , the matrix representation
of U(t) is

1 0 0 0

U(t): 0 Cf)Su)t —sinwt 0 . (69)
0 sinwt coswt 0
0 0 0 1

I'(t) represents the noise which is trace- and hermicity- preserving, i.e., has the form in Eq. .
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9. Solving the commutation relation that gives phase covariant qubit map [2412§]
U(@),T(#)] =0 < [U(), ()] =0, (70)

we obtain the matrix representation of I'(¢):

1 0 0 0
M) = 7. (t) c.osﬁ —ny(t)sind 0 , (71)
0 7ni(t)sin® ny(t)cosd 0
K(t) 0 0 ) (t)
Ny (t)cosd —ny(t)sind 0
where m = (0,0, (t))” describes a translation along the z-axis, and M = | 5, (£)sinf 7. (t)cosé 0

0 0 m(t)
describes a rotation along the z-axis and a contraction characterized by 7. and 7. The product of U(t) and
(t) then gives A(t):

1 0 0 0

_| 0 ni(t)cosg —ni(t)sing 0
MOI=L 0 miysing mi(eoso 0 )

K(t) 0 0 ) (t)

where ¢ = wt + 6.
10. By Eq. 7 we obtain the time-local master equation for a single qubit:

=(Olp(t)] = - seloplt)]
F OO — sloopp0)}) -
F1- (O p0)s — oo, pH))
+7:(t)(0=p(t)o= — p(t)),
where
YN0
1+t =5 <Fi () — o (k(t) + 1)) ; (74)
, Wt
1= (K 0+ Z::Et)u - m<t>>> , (75)
_1(m® ni
(1) = <77| ) 2m(t)> (76)
Considering only 75 noise, v—(t) = v4(t) = 0, 1 is constant, and
nu(t) = B, (77)
where v is the stretch character which equals 1 for Markovian noise. Then
v tu—l
70 = 5 (78)

We further need to express Z(t) as a superoperator acting on the vectorization of p(t). Defining the vectorization
of a matrix as the map

p= ZP%’J’ i) (Gl = |p) = Zpij l7) ® i) . (79)

(]
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Define the left and right multiplication superoperators by L(A)[p] = Ap and R(A)[p] = pA so that [A, p] = L(A)[p] —
R(A)[p]. By this definition, we can calculate the matrix representation £(A) = I ® A and R(A) = AT ® I. Using the
superoperator notation, we can express =(t) as

1

(1) =0T ®0: ~0: @ 1) +7:(t)(0: ®0: ~ IO T). (80)

[1]

With this expression, we numerically simulate the evolution of our entangled states under non-Markovian noise by
using the Time-Dependent Master Equation Solver in QuTip [29].

Supplementary Note 6: Performance of metrological states in a non-Markovian environment

To calculate the derivative of probability with respect to w in the calculation for CFI,, we use a method similar
to parameter shift that utilizes the property that the signal accumulation operator (U(w) = e~%!/=) and the noisy
operator commutes. In the following notation,

1. z represents a multi-qubit state in the z basis;
2. U(w) is the effective signal accumulation operator: U (w) = e~ */v;

3. p is the state density matrix of our optimized state after the noisy evolution without signal for some Ramsey
time and a 7 pulse along the x direction (here we switch the order of the signal accumulation and the second
pulse of the Ramsey protocol [1§]);

4. P(z|w) is the probability of measuring the state z with our rotated optimized state after the noisy evolution
and signal accumulation.

Then
0 0
SPGlw)| = STl Glut @)
0
= DU W) [2) (GU@)l| &)
= LU @) 2) Clu@)l| T )12 ] uw)al|

= atTr[(Jy [2) (2] = [2) (2| Jy)p].

CFI,
tr

CFI,

- as the result
R

. Thus we choose

From Eq. , since Tior and dw? are constants, SNR is proportional to

we show in Fig.4(d) in the main text.

Supplementary Note 7: Time Overhead

In experiments, the time overhead, including the state preparation and readout time, reduces the repetition number
of the sensing sequence and thus decreases the sensitivity. For all the proposed experimental platforms the readout
time exceeds the typical T, and state preparation time, which means that even for protocols with CSS the time
overhead is significant [30].

If we consider a nonzero time overhead, i.e., M = tRTf; = the expression for SNR? for an uncorrelated spin state
becomes o
Trott? cos?(wtgr)ow?
SNR? = tor iy C05” (1R ) . (82)
'R
(tr + ton) <€2<T2) — sin? (th)>
If ton >> tr, we ignore the term ¢g in the denominator and
2
SNR? oc — 2. (83)
R
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Supplementary Figure 10. Sensing performance under large time overhead: 50 cases average sensing
performance of the optimized states when using 7-layer circuit on 3D random spin configuration.

Taking the derivative of Eq. with respect to tr gives us the best tg if the time overhead is significantly larger:

T
th = —. (84)
Vv

Y
Similarly, the same calculations for a GHZ state where the decay term in Eq. becomes e2n(T2) show that the
best Ramsey sensing time is

. 85
(nv)v (85)

Plugging Eq. and Eq. into Eq. , we find that the ratio of the SNR? of a GHZ state to that of an
uncorrelated spin state is n'~v. Thus, only when

v>2 (86)

do GHZ states provide an advantage in SNR over uncorrelated spin states when ., >> tg. We compare the SNR of
the states generated by the optimizer with that of the CSS and GHZ states when v = 2,3, 4. Fig.[I0]shows that when
we assume a long time overhead, the generated entangled states are less sensitive than CSS when v = 2 and v = 3
for large spin numbers.

Supplementary Note 8: State preparation time comparing to adiabatic method

State preparation time is one of the major components of the time overhead in the generalized Ramsey sensing
sequence which influences the sensitivity. The state preparation time of the variational method depends on the circuit
layer number m, system size N and is proportional to the inverse of average interaction strength 1/fqq4. The adiabatic
method [3T] is an alternative approach to generate entangled states for quantum metrology in dipolar-interacting spin
systems by only using single-qubit rotations (global pulses).

To compare the performance of our variational method with the adiabatic method, we derive the relation between
the squeezing parameter (Wineland parameter [32]) and CFI. Without loss of generality, we consider a SSS with
collective spin direction +z and is squeezed along the y-axis (such as the 3rd Wigner distribution shown in Fig. @(b))
In this case, the squeezing parameter is

(AT,)

2
SN

(87)

where (AO)? = (0?) — (O)? and N is the number of spins. According to the uncertainty principle,
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(A, (AL) > LU (55)

The relation between the squeezing parameter and total spin angular momentum uncertainty projection in z-direction
is

A v (59)

It’s been proven that for a pure Gaussian state, the quantum Fisher information (QFI) is directly related to the
variance of the projected spin angular momentum [T713334]:

QFT = 4(AJ.)2 (90)
Combining Eq. and Eq. , we obtain the relation between CFI and squeezing parameter of a SSS:
CFI < QFI > N/&2. (91)

The first inequality in Eq. is saturated by measuring the SSS along the direction where it is squeezed (y-axis,
or equivalently measuring it in z-basis after applying a R, (%) pulse [35]). The second inequality originates from the
uncertainty principle (Eq. ) Since the optimal SSS saturate the Heisenberg uncertainty relation [36] and the
SSS generated by the adiabatic method [3I] belongs to these states, we obtain the relation between the squeezing
parameter and CFI

CFI = N/&2. (92)

Based on the data shown in Fig.3 from ref. (31]), it takes about 200us for the adiabatic method to prepare an
8-spin SSS with &2 = 0.4 which corresponds to CFI = 20. The 2D spin density 8/(30nm x 30nm) corresponds to
faqa = 43.5kHz. According to Fig.3(d) in the main text, the variational method is able to prepare an 8-spin entangled
state with CFI ~ 20 by a 4-layer circuit with fqq7 = 0.8. Plugging in the same average nearest neighbor dipolar
interaction strength fqq, we finally calculated the state preparation time of the variational method is T = 18.4us,
which is about 11 times faster than the adiabatic method under the same condition.

Supplementary Note 9: Numerically solving Schrédinger and Lindblad equations

In this work, both the Schrodinger equations for unitary evolution and Lindblad master equations for noisy evolution
are not solved via diagonalization, since the matrix dimension increases exponentially with the spin ensemble size and
makes the computation ineffective and memory-consuming. In particular, for noisy cases, using the superoperator
formalism would lead to a dimension growth of 4. For 10 spins, the dimension would exceed one million. Instead,
the equations are solved with linear multistep methods, which are well-suited numerical integrators to solve ordinary
differential equations in the form of % = f(y,t), y(to) = yo. Depending on the stiffness of the equation, implicit
Adams method (for nonstiff) and backward differentiation formulas (for stiff) are applied. In simple words, the
approximated values for y at previous time steps initialize slopes f, which are then interpolated by a polynomial.
Replacing the original integrand by the interpolation polynomial gives a new approximated y, solved via an implicit
equation. These methods are provided by scipy.integrate.ode of the scipy package of Python, setting the integrator to
be “zvode”, meaning complex-valued variable-coefficient ODE solver. Details of the algorithm are described in [37].

SUPPLEMENTARY DISCUSSION: CONTROLLABILITY

Since all the black-box optimization algorithms cannot ensure that the optimized result is the global maxi-
mum/minimum point of in the parameter space, it is sill an open question that if the variational method is able
to find the ’best’ metrological state for a given spin configuration or not. In this section, we’re interested in the
theoretically achievable controllability of dipolar interacting spin systems. The question is, given any (possibly infi-
nite) arbitrary sequence of evolution under each Hamiltonian governing the dynamics of our system, can we drive any
arbitrary unitary operator? Quantum control systems of the general form

K
H(t) = Ho+ > ui(t) i, (93)
k=1
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governed by the Schrodinger equation, i< |1(t)) = H(t)[¢)(t)), have been studied extensively [B83940]. Hy is the
unperturbed or free evolution Hamiltonian, Hj, are the control interactions, and u(t) are the piecewise continuous
control fields. There are several distinct but related notions of controllability that have different conditions for ‘full’
controllability. The notion of ‘operator’ or ‘complete’ controllability is the strictest condition and is defined as above.
For generic interacting spin systems, all of these notions are equivalent. Complete controllability is equivalent to
universal quantum computation (UQC) in quantum information processing (QIP) [41l42].

Controllability Test

The way we investigate the controllability of a generic system (Eq. is by examining the so-called ‘dynamical Lie
algebra’ Lo C u(N') or su(N) generated by the operators {—iHg, —iHy, ..., —iH}, which are represented by N x N
matrices in a basis we choose [38/39].

A quantum system of the form (Eq. is completely controllable if either Lo = u(N) or Ly = su(N) [38], where
u(N) is the unitary Lie algebra represented by the set of skew-Hermitian N x A matrices and su(N') is the special
unitary Lie algebra represented by the same set of matrices with the extra condition that they are traceless. Note
that dim u(N) = N? and dim su(N) = N2 — 1, and the difference of 1 comes from counting identity operation (I)
as a dimension or not. We must find a basis for Ly by iteratively taking the Lie bracket [-,-] of Ho, Hy, ..., Hx until
we have a set of dim £ linearly independent matrices, where the Lie bracket is the commutator [A, B] = AB — BA
for matrices A and B. Ref.[38] and ref.[39] present an algorithm for generating this basis. Thus, if dim £y = N? or
N? —1 we can say that the system is completely controllable. Note that for generic spin systems N' = 2V for N spins.

Controllability of Dipolar Interacting Spin Systems

We write our system in the form (Eq. by defining the free evolution Hamiltonian to be the dipolar interaction
Hgq and two control interactions J, and J, as these operators are generators of rotation, with respective independent
control fields 6,(t) and 6,(t):

H(t) = Haq + 0,(t)Jo + 0,(t)J,. (94)

Ref.[39)43] demonstrate that we cannot achieve complete controllability with global controls due to inherent symme-
tries, so we know that dim £y < 4V — 1.

However, complete controllability is a rather strict condition. Not being able to drive any arbitrary unitary does
not mean we cannot drive unitaries that produce metrological states.

In fact, ref.[44] demonstrate for a long-range Ising spin model (all-to-all interactions) with global controls that
metrological states, such as the GHZ and W states are reachable. Ref.[45] extend their result for symmetric Ising spin
networks with global controls and demonstrate that one can reach any state that preserves spin permutation invariance.
This is known as subspace controllability. The dimension of their dynamical Lie algebra, £"¢ = £P1 N su(2V), is

Algorithm. Generating £y and finding dim Lo.

Input: Hamiltonians I = {Ho, H1,...,Hkx}
1. B = maximal linearly independent subset of I
r=|B|
. If = N? then O = B else O = {}
. If r = N? or |B| = 0 then terminate
. C =10,B]U|[B, B], where

[51,82} = {[81,82] |81 € 51,82 € SQ}
6. 0O=0UB

7. B = maximal linearly independent extension of O with

SIS U

elements from C'
8. r=r+|B|; Go to 4
Output: basis O of Lo and dim Lo = r

Supplementary Table 2. Implementation of [39]’s algorithm with a few physically motivated modifications. Note
|S| indicates the cardinality of set S.
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Lie algebra dimension N=2 N=3 N =4 N =5
Completely controllable: 4V (or 4% — 1) 16 64 256 1024
Haq 9 39 225
Symmetric Ising: (N;?’) -1 9 19 34 55

Supplementary Table 3. Lie algebra dimensions for the complete controllable system, dipolar interacting system
and symmetric Ising system (lower bound for subspace controllability). Dipolar interacting spin systems’ dim £y is
calculated using an implementation of [39)’s algorithm, and is necessarily bounded by the complete and subspace
controllability dimensions. Lie algebra dimensions for dipolar interacting systems are only calculated up to N =4
due to stability issues stemming from numerical errors in how matrix rank is calculated.

shown to be (N ;,' 3) — 1. This is relevant to our system because [46] show that if we replace the Ising interaction with

a more general two body interaction—which includes Hqq—the dimension of the dynamical Lie algebra is necessarily
greater than or equal to that of the symmetric Ising case, and it is therefore subspace controllable. This means that
we can write (N ;[r 3) —1<dim Ly < 4" — 1 and say that £, is subspace controllable but not completely controllable.

Therefore, we can achieve arbitrary permutation invariant states, including metrological states such as a GHZ state.

Finding Reachable States

Ly is associated with a Lie group e“° by the Lie group-Lie algebra correspondence [38]. The Lie algebra u(N)
corresponds to the Lie group U(N), and su(N') corresponds to SU(N'). We can define R = e as the reachable set
of unitaries we can drive under {Hy}r—o,...x, and so starting from an initial state |¢g) , Ry, is the set of states we
can reach.

As demonstrated in the previous section, our dynamical Lie algebra is a superset of L8 and a strict subset of
su(2V), so we can write £ C ¢fo ¢ SU(2V). Because |GHZ) € szzrf@gjv we can write |GHZ) € Rfoifgiir. In fact,
this is true for any permutation invariant state, which includes all metrological states we're interested in.

While we know that metrological states are in the reachable set, determining the parameters that drive the unitaries
to produce those states is a highly convex optimization problem equivalent to our variational circuit, using state fidelity
between the ideal state and the current state instead of CFI as the cost function. That is we optimize the output
unitary of the variational circuit,

m
S(G) — 15y H e—z‘n,Hdde—w,,JJeigJye—iT;Hdde—igJy7 (95)

i=1

where m is the (possibly infinite) number of layers, for state fidelity,
2
F(IGHZ),5(0)]0)°™) = |(GHz| S(8) |0)*™ (96)

for pure states. If there exists some 0 such that F(|GHZ),S(0) |O>®N) = 1, then we can say that |GHZ) € Rﬂ;;’g}?r.

From the previous section, we know such a @ must exist, but it may be the case that m — oo, in which case it is
not possible to find this exactly. This is the method employed in ref.[44/47] to demonstrate the reachability of GHZ
and W states for Ising spin models. Our variational circuit method represents an improvement in the efficiency of
searching for such metrological states.

SUPPLEMENTARY METHODS
Large spin number (N — 100) optimization: discrete truncated Wigner approximation (DTWA)

The optimization results for small spin number (N < 10) are of particular interest to nanoscale quantum sensing,
where the sensor size limits N. On the other hand, the advantage of Heisenberg limit quantum sensing (%) becomes
more dominant compared to stand quantum limit sensing (\/iﬁ) when the spin number N is large. Thus, it is worth
to discuss the performance of the variational method in large N case. However, numerically simulate large N system
is challenging because the Hilbert space grows exponentially.
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We employ discrete truncated Wigner approximation (DTWA) [48/49], Monte Carlo algorithm, to semi-classically
simulate the time evolution of large interacting spin system. Instead of using a 2"V dimensional density matrix (or
state vector) to describe the spin system, DTWA represent each spin by a 3-dimensional vector (s?,s?,s?), where
s;¥% are real numbers that stand for the spin components for number ¢’th spin. The initial values of s;¥* are
randomly sampled following the probability distribution of the initial quantum state and the time evolution of s]¥"*
is described by a classical Hamiltonian equation [48]. The final time evolution results are obtained by averaging the

results from different initial values of s;'¥"*

a DTWA vs. Exact Solution b DTWA for Large System
40 7 300
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Supplementary Figure 11. DTWA optimization results: In 2D square lattice spin configuration. (a) Sanity
check for N = 2 — 10, circuit layer m = 1. Results from the optimizer using the exact Schrodinger equation solver
(sesolve) and DTWA are shown. (b) Optimization up to N = 100 by using DTWA, circuit layer m = 1,2, 7.

Due to the statistical nature of the Monte Carlo simulation, DTWA is not compatible with parameter shift, the
way we previous computed the cost function [T9J20021]. Thus, we use the CFI, of a Gaussian states which related
to the squeezing parameter as the cost function for DTWA optimization (derived in Eq. . Figure a) shows
the optimized data by using DTWA and exact numerical simulation (sesolve function in QuTip) for the 2D square
lattice spin configuration when N < 10. We observed that the optimized results from DTWA are lower than those
from the exact simulation when N > 5. This can be attributed to the statistical fluctuation induced by the DTWA
algorithm and it’s influence to the landscape of the parameter space which might be harder to optimize. Note, the
unphysical beyond-HL sensitivity for N = 2 is an example where DTWA fails in describing a highly entangled state.
Based on the CFI = CFIg, = 4 result by using the exact numerical simulation, we know that a GHZ state (Bell pair)
is generated and DTWA is not able to correctly capture the properties of such highly entangled state.

In Fig. b), the optimized CFIg, of 1, 2 and 7 layer circuit for spin number up to 100 are shown. Beyond-SQL
sensitivity is still reached in 1 and 2 layer circuits’ results. Note, the circuits for m=1 (and m=2) are a sub-set of
m=7, yet the shallower circuits outperform m=7 in DTWA. We attribute this to CMA-ES failing to optimize the cost
function in a large dimensional space, which is particularly difficult given the statistical nature of DTWA.

The DTWA optimization results indicate that our approach is promising to realize beyond-SQL quantum sensing
for 2D spin systems, even when the spin number is large and the circuit shallow. However, further investigations
regarding scalability of our variational method on 2D random/3D random spin configurations is needed. More robust
optimization algorithms that are compatible with large N and m would likely further the improvements. On the other
hand, running the optimization directly on the experimental platform will potentially get around the difficulty of
simulating large spin ensembles precisely and optimize for suitable quantum states under all kinds of experimental
imperfections.
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